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ABSTRACT
Location-based embedding is a fundamental problem to solve in

location-based social network (LBSN). In this paper, we propose a

geographical convolutional neural tensor network (GeoCNTN) as

a generic embedding model. GeoCNTN first takes the raw location

data and extracts from it a well-conditioned representation by our

proposed Geo-CMeans algorithm. We then use a convolutional neu-

ral network (CNN) and an embedding structure to extract individual

latent structural patterns from the preprocessed data. Finally, we

apply a neural tensor network (NTN) to craft the implicitly related

features we have obtained into a unified geographical feature.

The advantages of our GeoCNTN mainly come from its novel

neural network structure, which intrinsically offers a mechanism

to extract latent structural features from the geographical data, as

well as its wide applicability in various LBSN-related tasks. From

two case studies, i.e. link prediction and entity classification in

user-group LBSN, we evaluate the embedding efficacy of our model.

Results show that GeoCNTN significantly performs better on at

least two tasks, with improvement by 9% w.r.t. NDCG and 11% w.r.t.

F1 score respectively, using the Meetup-USA dataset.

CCS CONCEPTS
• Social and professional topics → Geographic characteris-
tics;

KEYWORDS
Location-based Social Networks, Feature Embedding, Deep Learn-

ing

1 INTRODUCTION
Location based social network (LBSN) continues to gain popularity.

In 2017, there are over 55 million monthly active users and over

12 billion
1
cumulative check-ins in Foursquare

2
alone. Yet there

is still more room for these networks grow. LBSNs provide users

with a multitude of information and services around their current

locations, thus enriching their off-line daily lives. For example, Yelp

1
https://www.statista.com

2
https://foursquare.com
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Figure 1: Location-based social networks.

provides restaurant advice based on a user’s daily routine as well as

his/her friends’ check-ins. Examples of LBSN include Meetup, Yelp,

and Facebook
3
. In such networks, various kinds of heterogeneous

entites, i.e. users, groups, events, etc., interact at a given location in

near-real time (Fig. 1). For this study, we take Meetup, a popular

off-line group meeting facilitator website, as an illustrative example

where users seemingly prefer to participate in meet-up groups

not far away from their current residence. This behavioral pattern

resonates with Tobler’s first law of geography [38] that says near

things are more related than distant things.

Traditional tasks in social networks, such as link prediction

[44, 48] and entity classification [32], are still the focal points in

LBSN, while the difference lies in the additional geographical infor-

mation brought by its innate setting. How to extract useful location-

based features from the original geographical information largely

determines the final performance of a specific learning model.

From our perspective, the following illustrative examples will

present two indispensable aspects of a good geographical feature:

• Users living in Shanghai are considered to be more similar

to each other than those living in Beijing, e.g., their pref-

erences for spicy or sweet food. Inspired by Tobler’s law,

methods such as those presented in [34, 47] exploit such

kind of similarity via the assumption that entities with in-

tersecting regions of activities should have more similar fea-

tures. For example, [23] takes advantage of the geographical

neighborhood characteristics for location recommendation.

• Users exhibit different location patterns even though they

all live in Shanghai. As is shown on the right part of Fig. 1,

user A on the left has a more concentrated location pattern

locally than user B’s on the right. It seems A prefers to stay

home most of the time while B enjoys hanging out in diverse

3
https://www.meetup.com https://www.yelp.com https://www.facebook.com
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locations. It inspires us to obtain more expressive features

via considering the characteristics in their location patterns.

In the former example, geographical distance still has a consid-

erable impact on entity’s behavior in LBSN. We refer to such a

factor as a global factor. Moreover, the latter case illustrates that

the difference inside location patterns locally may also play an

essential role in determining entity’s behavior, which is referred

to as a local factor in this work. To our knowledge, most of the

previous works such as [34, 47] are basically focused on exploiting

the global geographical information, while, from our perspective, it

is critical to combine the local information from location patterns

with the global information as a complement.

A similar consideration has been introduced independently in

several fields such as image processing [18] and time series analysis

[21]. To the best of our knowledge, methods for combining global

and local geographical information have not ever been proposed

for location-based social networks, probably due to the difficulty of

obtaining a well-conditioned representation as input from the raw

location data, which is inherently sparse.

In this paper, we present a location-based embedding model

called GeoCNTN, which allows us to obtain a unified feature from

raw locations for each entity by crafting both global and local

geographical information.

A brief description of our proposed method is presented here.

Given a set of locations defined by their longitude and latitude

for each entity, we first apply our fuzzy-clustering method (Geo-

CMeans) on the curved surface of the earth. With fuzziness, we are

able to represent areas where local patterns can be revealed without
fractures. We then divide the global geographical coordinate system

into grids, obtain the indices of grids where cluster centers are

located, and reformulate each grid ID into a corresponding one-hot

vector (Fig. 3(b)) as a global representation of locations. Simultane-

ously, matrices that represent the occurrences of locations in the

gridded domain of each truncated cluster (Fig. 3(c)) are obtained as

the corresponding representation for each local pattern. We then

apply a 3-layer CNN for feature extraction from local patterns,

which would otherwise suffer from extreme sparsity without our

preprocessing procedures, and project global representations into

a vector form as a global feature via embedding the geographical

grids into vector space. In the final step, we combine the global

and local features into a unified form with a neural tensor network

(NTN) [37], which is well-known for its capability to capture higher

order correlations among several implicitly related inputs.

Our contributions are three-fold:

• We propose a neural network based embedding structure

called GeoCNTN, which adopts embedding table [33] and a

convolutional neural network for extracting features from

global and local geographical information, respectively.With

application of neural tensor network, our model are able to

craft the global and local features together, capturing their

innate correlations.

• We develop a curvature-sensitive fuzzy clustering method

called Geo-CMeans to obtain well-defined global and local

representations from the original geographical data.

• Our generic model has a strong applicability for a wide range

of LBSN-related tasks.

As a validation for our feature extraction model, we apply our

model to both link prediction and entity classification tasks in

LBSN. Compared with the state-of-art, our model can perform

much better with a net improvement by 9% w.r.t NDCG in the

former task and by 11% w.r.t F1 score in the latter one. We have

also validated the interpretablility of the obtained features via a

series of visualizations.

The rest of the paper is organized as follows. Section 2 describes

the related work. In Section 3, we present our approach for ob-

taining well-conditioned representations of location patterns with

our geographical fuzzy-clustering method, Geo-CMeans. In Section

4, we propose our GeoCNTN model for obtaining location-based

embedding from global and local representations that we have ob-

tained in Section 3. In Section 5, we present several applications

with our generic model and conduct a series of experiments and

visualizations. Section 6 concludes our work.

2 RELATEDWORK
2.1 Discovering location patterns in LBSN.
Location information is innate in LBSN [42]. However, existing

models often simplify a location with an integer ID rather than

explicitly exploiting the geographical information, e.g., common

places between entities [34, 47]. These methods are unable to ana-

lyze the influence of geographical relatedness, which means they

in essence could not recognize location pattern for entities.

In fact, location pattern recognition has been a popular topic

in recent years. Existing methods can be classified into three cat-

egories. The first kind is based on rules à priori. Methods such as

extracting different statistical features in LBSN [6], e.g., entropy of

places, model user’s movement patterns based on the assumption

that users may stay around their home and work places [5]. This

kind of methods can only fit specific datasets that satisfy their prior

assumptions, making them relatively weak for generalization. The

second kind of methods is based on modeling location patterns with

a specific probabilistic distribution on pairwise distances [40, 43]

or a two-dimensional Gaussian for locations with coordinate repre-

sentations [4, 22]. These methods may fail to extract personalized

visiting pattern of their entities in LBSN because of a common

probabilistic modeling for each user. The third kind argues that pat-

terns of each user can be different [46] and should not be modeled

as a common distribution, which leads to the application of the

kernel density estimator method (KDE) to model the distribution

of pairwise distance with a much more powerful extension into

2-dimension [45]. However, this family of methods may be overly

complex and over-fitting can be a problem [20, 45].

As for the clustering of location patterns on a map, K-Means

has been proposed to partition user’s locations into several clus-

ters [1]. However, as pointed out by [9], hard-clustering method

like K-Means may be sensitive to noise points. On the contrary,

density-based clustering (fuzzy clustering) can remove noise points

by filtering out low probability points under some thresholds. For

example, [4] proposes to use multi-center Gaussian model to cluster

locations into different areas with soft boundaries. A fuzzy cluster-

ing algorithm that is able to find center and radius of clusters for

users was proposed by [29]. However these methods did not take

Track: Web and Society WWW 2018, April 23-27, 2018, Lyon, France

834



the curvature of the earth surface into account, which may led to

the imprecision problem with a large geographical range setting.

2.2 Neural Network Architecture
Recently, neural networks have achieved significant success in me-

dia processing tasks, such as image labeling, speech recognition

[18], as well as obtaining useful embeddings [3, 27, 28, 33]. Further-

more, the use of convolutional neural network has been shown to

perform much better than most traditional methods in several tasks

[13, 17, 24, 36].

A previously proposed architecture [21] is able to combine global

and local information in time series analysis with a CNN for local

pattern and long short term memory for global tendency. However,

as far as we know, similar consideration has not been attempted for

location pattern analysis, probably due to a lack of well-conditioned

representations of both global and local location information. For

example, a rough preprocessing may bring extremely sparse rep-

resentations, which is unlikely for CNN to extract any useful fea-

tures [7]. More specially, several recent studies have already found

that neural network structures are very effective in discovering

1-dimensional location pattern. For example, [39] uses recurrent

neural network to exploit temporal information of check-ins. How-

ever, to our knowledge, work using neural network architecture for

extracting feature for entities in LBSN directly from 2-dimensional

geographical information has not yet been proposed, unlike those

with a similar consideration found in natural language processing

(NLP) and image processing.

3 DATA REPRESENTATION
As pointed out by [9], geographical distributions of locations in

LBSN tend to have the following characteristics: (1) Visited loca-

tions of a certain entity tend to cluster in several implicit centers. (2)
Locations away from any of these cluster centers can be considered

as noises.

From our perspective, the noise locations could be considered

negligible in our context, not only because of their relatively loose

connections to each cluster, but also their lack of representative-

ness w.r.t. the local location distribution patterns. Intuitively, these

singular points highly likely exist at the margin of clusters. Such

an approximation thus has rather slight effects on our analysis of

global and local location distribution patterns for a given entity.

Based on these prior observations, we present an auxiliary con-

cept calledArea in LBSN, which plays an indispensable role through-
out the discussion of our proposed model.

Definition 3.1. An Area is a truncated cluster representing the

locations of a given entity in LBSN.

For a better understanding our area concept, consider a busi-

nessman who regularly travels to several cities. Although he makes

abrupt visits while he is away, these visits may have little contribu-

tions to his global mobility distributions nor his local patterns in

the city where he resides. We may thus consider each of these cities

for business or every-day life an area related with him, except his

unexpected adventures.

As a by-product of our definition, the concept of an area spon-
taneously separates information contained in the original set of

locations into global and local information. Based on that separation,

Figure 2: Geo-CMeans algorithm on curved plane.

well-formed representations can be constructed rather naturally by

globally positioning and locally zooming, which is the focal point

of 3.2, 3.3.

From now on, the primary problem lies in how to detect a number

of areas of a given entity without introducing unnecessary fractures
of local patterns, while at the same time, filtering out negligible

noise locations. As a strong candidate solution for fuzzy clustering

on a curved plane, we develop a new algorithm called Geo-CMeans

on the surface of the earth introduced by a large geographical range

setting. Before an overall discussion of our method, we define the

nomenclature.

3.1 Notations
In the context of location-based social networks, the set of all en-

tities is denoted as E. An entity e ∈ E in a general social network

should be augmented with additional geographical information, de-

noted by a set of visited locationsLe = {L
i
e }
ne
i=1

, whereLie � (λie ,ϕ
i
e )

denotes the longitude and latitude of a certain visited location.

Moreover, let [N] denote the set {1 . . .N }, C denote the number of

clusters, and a representation with footnote e means it belongs to

entity e . Ake denotes a fuzzy cluster with pAke
as its induced proba-

bilistic distribution function (p.d.f). Ãke is a truncated cluster from

Ake , as we will call it area later. Ĩ
k
e denotes the one-hot vector ob-

tained from area Ãke , while P
k
e is corresponding local pattern in

matrix form.GFe and LFe respectively denote the global and local

feature, while Fe is a unified feature learned by our model.

3.2 Geo-CMeans Clustering for Area Detection
In this work, in order to detect the set of areas {Ãke }

C
k=1

for an

entity e , we introduce a geographical fuzzy C-Means algorithm

(Geo-CMeans) on the basis of the classical fuzzy clustering method

C-Means [8]. As we know, a hard clustering methods, such as K-

Means, tends to give rigid boundaries among a set of points, which

may make otherwise whole visiting pattern fractured in our context.
An illustrative example occurs when we apply K-Means with a large

k to a small number of concentrated locations. It will then partition

the pattern into several pieces, which makes the position of the

center lost. With a fuzzy clustering method, we can innately avoid

this potential problem.

From another aspect, distance between points plays a critical role

for any clustering methods. As the underlying geographical range

gets larger, the geographical distance between locations cannot be

calculated with an original Euclidean distance formula. Instead, we

propose to use a common approximation of the intrinsic distance

formula (Eq. 3) over the earth. An illustrative result of our algorithm

can be found in Fig. 2.
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(a) Area detection by Geo-CMeans. (b) Global representation Ĩe . (c) Local representation Pe .

Figure 3: Obtain global and local data representation of an area.

For a certain entity e , its location set is Le containing ne points,

and a generic location xi = (λi ,ϕi ). Suppose we want to find C
areas for this entity, where each area has its center defined as

µ j = (λj ,ϕ j ), an extended loss function relative to Fuzzy C-Means

can be formulated as

min

p,µ

ne∑
i=1

C∑
j=1

pϵi j · d (xi , µ j ), s .t .
C∑
j=1

pi j = 1 (1)

where pi j represents the probability that point xi belongs to area

j, µ j the center of area j , and ϵ ∈ (1,+∞) (used for preventing de-

generate solutions during optimization). To solve this optimization

problem, we adopt Lagrangemultiplier method with the Lagrangian

defined as

L =

ne∑
i=1

C∑
j=1

pϵi j · d (xi , µ j ) +

ne∑
i=1

ηi (
C∑
j=1

pi j − 1) (2)

where ηi is the Lagrange multiplier. With an approximate intrinsic

distance over sphere d (xi ,x j ) defined as

d (xi ,x j ) = R

√[
(ϕi − ϕ j )2 + (λi − λj )2 · cos

2 (
ϕi + ϕ j

2

)
]

(3)

where R is a positive constant independent of the choice of i, j, we
are able to use the alternative direction multiply method (ADMM)

to minimize L.

After steps of algebraic manipulation, we obtain the updating

rules in closed forms for λ,p as

pi j =
[ C∑
k=1

( d (xi , c j )
d (xi , ck )

) 1

m−1

]−1

, λi =

∑C
j=1

pϵi j
R

d (xi ,c j )
· λj∑C

j=1
pϵi j

R
d (xi ,c j )

(4)

while for ϕ j , stationary point condition is written as

h(ϕoj ) =

ne∑
i=1

pϵi j
R

2d (xi , c j )
·
[
2(ϕi − ϕ

o
j ) +

1

2

sin(ϕi + ϕ
o
j )
]
= 0 (5)

Without an explicit closed form, we apply the Newton method

to solve this optimization problem with the second-order derivative

written as

h′(ϕoj ) =

ne∑
i=1

pϵi j
R

2d (xi , c j )
·
[
− 2 +

1

2

cos(ϕi + ϕ
o
j )
]

(6)

As a final comment, in order to accelerate the convergence of

optimization, we set the initial value of ϕoj as the average of {ϕi }

from the observations {xi } as ˜ϕoj = 1/ne
∑ne
k=1

ϕk .

3.3 Positioning for Global Grid Representation
Each cluster {Ake }

C
k=1

we have obtained (Fig. 2) can thus be repre-

sented by each cluster center in the geographical maps, denoted by

{µke }
C
k=1

with a set of induced probability density function (p.d.f.)

{pAke
: E → [0, 1]}Ck=1

, where pAke
(Lei ) is the probability that loca-

tion Lei belongs to A
k
e obtained from Geo-CMeans (Fig. 3(a)). Fig.

3(a) serves as a 2-dimensional projection of a specific cluster in Fig.

2, for the sake of better visualization.

With the consideration of the intensively large number of enti-

ties and thus clusters in our problem setting, it is intractable if we

attempt to identify each one with a unique ID, which may otherwise

cause overfitting during learning. A solution lies in the discretiza-

tion of the whole geographical map into a two-dimensional grid

system [N ]× [N ], the grid of which is uniquely identified, say with

natural number set [N 2
], as demonstrated in 3(b). We then assign to

each area the ID Ike ∈ [N 2
] of the grid where its cluster center lies

and obtain the corresponding one-hot representations with length

N 2
denoted by Ĩe = {Ĩ

k
e }

C
k=1

. The set Ĩe will be further used as the

input of the embedding layer of our model in Section 4 (Fig. 4).

3.4 Zooming for Local Pattern Representation
In addition to the positioning practice we apply for the global infor-

mation representation, we devise a sub-procedure called zooming
for constructing a well-conditioned representation of local location

distribution patterns in Ake , which will be discussed as follows.

Although the domain of each fuzzy cluster component Ake is the

total E, the density of distribution is featured by an extreme sparsity

at the margin as shown in Fig. 2 & 3(a). It inspires us to truncate

a cluster with a certain probability threshold q ∈ (0, 1). For each

location Lie ∈ Ake , we exclude it from the belonging component

if pAke
(Lke j ) < q. After such a procedure is carried over all these

components, we obtain the set of truncated cluster components as

{Ãke }
C
k=1

, i.e. the set of areas for entity e .

In fact, we could interpret the Ãke that we obtained as a zoomed-

in view of the original Ake , which ignores the negligible part of the

domain. Ãke magnifies the view around the cluster center, which

Track: Web and Society WWW 2018, April 23-27, 2018, Lyon, France

836



Figure 4: Convolutional Tensor Network for crafting global and local geographical information.

Algorithm 1 Constructing Global & Local Representations

Input: Location set {Lei }
ne
i=1

as longitude-latitude pairs for each

entity e

Output: Extracted one-hot vectors {Ĩke }
C
k=1

, matrices {Pe }
C
k=1

Initialize: C areas, threshold q, global and local grid size N ,M
1: Divide map into N × N grids, assign each grid a unique ID

2: function Data_Representation(Le )
3: Apply Geo-CMeans algorithm in Sec. 3.2

4: Obtain clusters {Ake }
C
k=1

, centers {µke }
C
k=1

, p.d.f. {pAke
}Ck=1

5: for k = 1 to C do
6: Initialize area Ãke as ∅

7: Get the global grid ID Ike where µke locates

8: Convert the ID Ike into a one-hot vector Ĩke
9: for all location Lei ∈ A

k
e do

10: if pAke (Lei ) > q then add Lei to Ã
k
e

11: Set rke = maxLe j ∈Ãke
d (Lke j , µ

k
e )

12: Set the center of square as µke
13: Set the side length of square as 2rke
14: Divide the square intoM ×M grids.

15: Initialize theM ×M local pattern matrix Pke as zeros

16: for all location Lei in area Ãke
17: Find the grid where Lei is located

18: Increment the corresponding count in Pke
19: Add Ĩke , P

k
e respectively to {Ĩme }

k−1

m=1
, {Pme }

k−1

m=1

20: return {Ĩke }Ck=1
, {Pke }

C
k=1

21: end function

is exactly the representation of an area on the global level of view.

We define the radius of each area as rke =maxLie ∈Ãke
d (Lie , µ

k
e ). The

outcome of the procedure above is illustrated in Fig.3(a).

We finally discretize the domain of each truncated components

again as an integer-valued two-dimensional grid system [M] ×

[M] → N, where Pe (i, j ) gives the count of Lie in Ãke , as shown

in Fig. 3(c). The center of each grid system Pke is aligned with the

center of the corresponding area, while the geographical range

represented by such a grid system is 2rke × 2rke , which corresponds

to the common knowledge that the rescaling is independent of

a local pattern. The set {Pke }
C
k=1

will serve as the input of CNN

component in our model (Fig. 4). The procedure discussed in this

section as a whole is depicted in Algorithm 1.

4 LOCATION-BASED EMBEDDING MODEL
After constructing a well-conditioned representation of the original

set of locations Le as a set of global one-hot vectors {Ĩ
k
e }

C
k=1

and the

corresponding relatively dense local pattern matrices {Pke }
C
k=1

, in

this section we propose a neural network based structure (Fig 4) to

merge these heterogeneous geographical representations of various

shapes, scalings, and even interpretations into a unified vector-

valued feature for entity e in a LBSN. As far as we know, our model

is the first neural net based structure for capturing the complex

entanglement between global and local geographical information.

4.1 Vector-Valued Embedding for Global
Feature Modeling

First, let us consider the problem of embedding a set of global one-

hot vectors {Ĩke }
C
k=1

into a vector GFe representing the entity e’s
global feature. In the literature of modern embedding methods, a

generic architecture proposed by [3] has a successful application

in NLP for word embedding [27, 28]. Within our context, we were

inspired by the representation compression power of such an effi-

cient embedding structure. With the help of such embedding, we

could compress the obtained one-hot representations by learning a

distributed embedding for each global grid. The technical details

are briefly explained as follows.

In the first layer we exploit the classical method proposed by [3]

that introduces an embedding table to map the one-hot represen-

tation Ĩke ∈ Ĩe into a vector, which has an intuitive interpretation

as the vector-valued embedding of a global geographical grid. For

each entity e , we obtain C vectors as its global embedding of the

grids. By the subsequent projection layer, C grid embeddings will

be combined into a single vectorGFe using average pooling, which

serves as an extracted global feature as shown in the lower part of

Fig. 4.

4.2 Convolutional Neural Network for Local
Pattern Feature Extraction

Local patterns of different entities over a set of geographically

related regions vary a lot [4, 5, 34, 41]. Even the same entity could
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Algorithm 2 GeoCNTN for location feature extraction

Input: Coordinate set {Lei }
ne
i=1

for each entity e
Output: Extracted features Fe
Initialize: Parameters θ , regularization α , learning rate β
1: function Embedding(Le )
2: {Ĩke }

C
k=1
, {Pke }

C
k=1
←Data_Representation(Le ) (Alg. 1)

3: Embed {Ĩke }
C
k=1

into vectors through embedding table

4: Do average pooling on obtained vectors to extract the global

feature GFe (Sec. 4.1)

5: LFe ← CNN({Pke }
C
k=1

) (Sec. 4.2)

6: Fe ← NTN(GFe ,LFe ) (Sec. 4.3, Eq. 7)

7: return Fe
8: end function
9: for all entity e ∈ E do (Sec. 4.4)

10: Fe ←Embedding(Le )
11: Update parameters with observations X (Eq. 8,??)

have totally divergent local patterns within distinct areas. A real-

world pattern is shown in Fig. 5.

(a) User may often stay

around a fixed center.

(b) User may prefer to

visit fixed places.

(c) User may often visit

an avenue.

Figure 5: Various local patterns of users from Meetup-USA.

As far as we know, few previous works have successfully ap-

plied CNN model to geographical pattern extraction, since a rough

preprocessing of geographical features may cause the otherwise

powerful convolution operator suffer from the extreme sparsity of

the global counter matrix for each entity. Thanks for our locally

zooming method (Sec. 3.4) applied during the representation con-

struction stage, we are able to alleviate the sparseness and obtain a

CNN-friendly relatively dense representation of local patterns.

Technically, we choose a classical 3-layer CNN architecture for

local feature extraction, as depicted in the upper part of Fig. 4. The

input of our CNN architecture is the C matrices {Pks }
C
k=1

, repre-

senting local patterns for each area Ãku , as shown in Fig. 3(c). Such

an input matrix is called a channel, which carries distinct views

of information, as suggested by [14, 17, 19]. With a similar con-

sideration, we stack C local patterns into a multi-channel input,

actively embracing the diversity of local patterns in distinct areas.

A multi-channel input is then forwarded into a convolutional layer,

a pooling layer, and finally a projection layer for producing a local

feature LFe for entity e . The feature extraction power of CNN for

local visiting patterns will be validated in the following sections

via self-comparison experiments.

4.3 Combining Global and Local Features with
Neural Tensor Network

After obtaining the global feature GFe and local feature LFe for

a given entity e , we further our discussion on merging these two

kinds of implicitly related feature into a unified form. Previous

Figure 6: Neural tensor network for a better unifying of
global and local features.

models such as [31, 35] adopt a naive method by concatenating

these vectors into a longer one, which, from our perspective, may

fail to model some deeper correlations between features residing

on distinct layers of abstraction.

In fact, a better neural architecture for this subtask is neural

tensor network (NTN) [37], which replaces the traditional structure

of a standard linear layer with input on the concatenated vector

with a tensor directly operating on several input features. This

architecture has the power to explicitly model the interaction of

features among the vector-valued cascading dimensions.

A formal description of NTNwith our notations for global feature

GFe and local feature LFe can be given as follows (a schematic

diagram with L = 3 in Fig. 6)

Fe = tanh
*
,
GFTe ·W

1:L · LFe +V ·
[
GFe
LFe

]
+ b+

-
(7)

where L represents the extra dimension of the tensor W, as com-

pared to an original weight matrix, with V term maintaining a

degenerate form as a linear layer and b the bias with dimension L.
We will see the advantage of NTN over the original linear structure

in our self-comparison experiments as well.

4.4 Optimization
The output of our GeoCNTN model can thus be considered as a

unified geographical vector-valued feature Fe for each entity e . In
order to refine the features obtained from our model, we introduce

a generic form of loss function as follows

L(θ ) = L(X |F ,θ ) + α ∥θ ∥2 (8)

where L(X |F ,θ ) is the log likelihood function of given set of

features F , with parameters θ and observations X , and the latter

term serves for regularization in case of overfitting. Specifically,

θ = {θc ,θe ,θn } are parameters of our model: θc for CNN, θe for

global grid embedding structure and θn = {W ,V ,b} denotes the
parameters of NTN.

Then we minimize the loss function in Eq. 8 in order to obtain an

optimal θ∗. Specifically we use gradient based method for training,

and We adopt Adam algorithm to conduct the learning process [15].

Our GeoCNTN is thus a widely applicable model used with

distinct form of observations in a wide range of tasks. Typical real-

world case studies in LBSN will be presented in Section 5 with

corresponding choices for the generic loss in Eq. 8. As a summary

of our model with the devised preprocessing method, the reader

can refer to Algorithm 2.

5 APPLICATIONS AND EMPIRICAL RESULTS
In this section, we conduct two typical case studies to validate our

location-based embedding model. The former uses heterogeneous
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Table 1: Statistics of Datasets for Experiments.

Information

Datasets

Meetup-USA Meetup-Europe

Users 35255 21004

Groups 12860 2521

Heterogeneous links 174354 178414

Longitude range (−125
◦,−65

◦) (−25
◦, 66

◦)

Latitude range (23
◦, 55

◦) (36
◦, 82

◦)

Average location # per user 13.6 12.3

Average location # per group 26.7 20.3

Linkage density 7.691 × 10
−4

6.739 × 10
−3

social links and the latter experiment uses entities’ implicit classifi-

cation as observations. We compare our model with the state-of-art

ones in both tasks. Finally we visualize the features learned by our

models for each entity in LBSN, the result shows that our model

not only perform well in prediction tasks but also give interpreted

features, unifying both global and local geographical information

after the supervised learning with observations.

We conduct our experiments on one NVIDIA GTX-1080. As a

near-optimal setting of model’s hyper-parameter during a large

number of experiments, we choose the learning rate as 0.005, reg-

ularization parameter as 0.01, grid configuration for the map as

100 × 100, that for local pattern as 10 × 10, cluster count to 3 for

our Geo-CMeans fuzzy clustering algorithm. In CNN, kernel size is

3 × 3, together with 2 × 2 max pooling and the projection layer as a

fully connected layer.

5.1 Case Study: Link Prediction
We first use links between heterogeneous entities in a user-group

LBSN as observations, specifically we set E = {U ,G}, where U rep-

resents the set of users and G the set of groups. Then the objective

loss function in Eq. 8 can be written as

L(X |F ,θ ) = −
∑
u ∈U

∑
д∈G

[
xuд log x̃uд + (1−xuд ) log (1 − x̃uд )

]
(9)

where xuд equals 1 if there is an observed link between u and д, 0

means not, with x̃uд = σ (FTu · Fд ) the prediction as a probability.

Such a task is well defined since intuitively entities with more

similar geographical features may have higher similarity in LBSN.

5.1.1 Experiment Settings. In this section we present our de-

tailed experiment settings as follows,

Datasets Metrics We validate our model on two real-world

Meetup datasets containing a set of locations for each entity, de-

scribed by longitude-latitude pairs, together with observed links be-

tween heterogeneous entities. We choose two datasets, i.e. Meetup-

USA andMeetup-Europe, with the detailed statistics shown in Table

1. We divide the training set and validation set with the ratio of 9:1.

In terms of metrics, we adopt normalized discounted cumulative

gain for first n items (NDCG@n) [12], receiver operating charac-

teristic (ROC) curve [10] and its corresponding area under curve

(AUC) [49] for the performance evaluation. Specifically, we choose

NDCG@10 in evaluation.

Comparison Methods We compare GeoCNTN’s performance

with several state-of-art models in predicting heterogeneous links

between users and groups, i.e. two content based methods (A)(B),

two collaborative methods (C)(D) and two content-based collabo-

rative methods (E)(F), together with three self-comparison models

(G)-(I). A brief review is as follows, (A) Adamic/Adar: A metric for

calculating similarity between two entities based on their common

neighbors in graph [34]. Here we grid the map and count ratio

of common grid as similarity. (B) Random Walk with Restart
(RWR) [2]: It uses geographical similarity and social similarity

between users and conduct predicting links between users by a

Random Walk with Restart algorithm. (C) Probabilistic Matrix
Factorization (PMF) [30]: A probabilistic model based on matrix

factorization to predict the rating between heterogeneous entities.

(D) Probabilistic Matrix Factorization with Social Regular-
ization (PMFSR) [25]: It suggests that users have similar social

connection should have similar latent factors, which outperform

PMF in link prediction. Here, we assume that users in common

groups share similar latent factors. (E) Pairwise Tag-enhanced
and feature-basedMatrix factorization for group recommen-
dation (PTA) [47]: It adds similarity-based features between user

and group to matrix factorization to conduct group recommen-

dation. Here, we use the minimized distance, common grids of

user and group as similarity. (F) Geographical Matrix Factor-
ization (GeoMF) [20]: It uses kernel density estimator (KDE) to

model user’s distribution on global geographical grids and add this

feature to matrix factorization to conduct point-of-interest (POI)

recommendation for users. Here, we regard group’s location set as

POI’s location. (G) rawCNN: Directly application of a CNN of the

same architecture to the location counting matrix obtained from

the global geographical grids and regard the output as the feature

vector. (H) GeoCNTN-no-local: We remove the CNN component

by injecting random white noise as local pattern (I) GeoCNTN-
no-tensor: We replace the NTN component with a simply vector

concatenation.

5.1.2 Performance. The NDCG@10 and AUC curves are shown

in Table 2, Roc curves and NDCG@n are depicted as Fig. 7. Com-

pared to the state-of-art models, our GeoCNTN brings a huge im-

provement by 9% in NDCG@10 for both dataset, compared with

the best baseline GeoMF.

First comparing two content-based models Adamic/Adar and

RWR, we can see that by the additional observations, RWR im-

proved 4% in NDCG, which means it may not be satisfying if we

only use location features to predict heterogeneous links in LBSN.

For a collaborative method such as PMF and PMFSR, which only

uses supervised heterogeneous links for learning and prediction, it

performs better than RWRwithout using any geographical informa-

tion. Then if we add rough preprocessed geographical information

into MF as PTA, we can see that it achieves 7% improvement in

NDCG than PMFSR, which states the fact that geographical in-

formation is useful in predicting social links in LBSN. By taking

advantage of geographical information in a more sophisticated way,

we can see that GeoMF made 10% improvement in NDCG than PTA.

We infer that 2-dimensional geographical data carries important

information in LBSN. AUC states the same result.
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(b) Roc curves on Meetup-USA. (c) Roc curves on Meetup-Europe. (d) NDCG@10 on Meetup-USA. (e) NDCG@10 on Meetup-Europe.

Figure 7: The ROC curves and NDCG@10 results of different methods on the two datasets.

(a) Original locations on the map. (b) Features learned by PMFSR. (c) Features learned by our GeoCNTN.

Figure 8: Visualization of original locations (a) and features (b)(c) via t-SNE, where the color of each scatter point annotates
the geographical cluster in (a) it comes from.

Table 2: AUC and NDCG@10 of comparison methods.

Methods

Results Meetup-USA Meetup-Europe

AUC NDCG@10 AUC NDCG@10

Adamic/Adar 0.747 0.291 0.691 0.344

RWR 0.805 0.333 0.793 0.386

PMF 0.871 0.445 0.859 0.496

PMFSR 0.885 0.456 0.875 0.517

PTA 0.906 0.524 0.896 0.531

GeoMF 0.933 0.625 0.915 0.565

rawCNN 0.497 0.011 0.496 0.021

GeoCNTN-no-local 0.864 0.435 0.854 0.433

GeoCNTN-no-tensor 0.951 0.664 0.923 0.630

GeoCNTN 0.962 0.718 0.937 0.660

Finally our model shows a remarkable advantage over these

baselines. Unlike GeoMF, which neglects the local location distribu-

tion pattern inside global grids as a conprimise to the complexity

of KDE, our model can exploit extra geographical information on

a finer level. Especially, we made 9% improvement in NDCG@10,

where asn gets larger, the result gets better, which means our model

can indeed make less errors in ranking negative-prone links on

top of the list. To do further study on the benefits brought by our

delicate crafting of global and local information, we conduct several

self-comparison models as follows.

5.1.3 GeoCNTN Parts Study. As depicted in Table 2, the compar-

ison between rawCNN and GeoCNTN states the fact that CNN can-

not even extract any information from the extreme sparse counting

matrix obtained without our locally zooming strategy. Furthermore,

if we remove the CNN part from our model, the result is similar

to PMF because the embedding of global grids only contains la-

tent information rather than geographical information. Finally, we

study the effect of replacing the NTN with a naive concatenation,

which brought poorer performance compared with our model by

about 5% in NDCG. The result shows that the tensor layer indeed

discovers the innate correlations between global information and

local pattern.

5.2 Case study: Entity Classification
Then we study another task, i.e., use entities’ location information

to predict their classification. In LBSN, each entity always has a list

of tags, e.g., shopping, reading, traveling etc. Entities with irrelevant

tags may have different location pattern intuitively. Based on such

an observation, we define the loss function as

L(X |F ,θ ) = −
∑
e ∈E

[
CEH (Xe , X̃e )

]
(10)
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Table 3: Experiment results (F1 score) for entity classifica-
tion (Case Study 2) on Meetup-USA.

Methods

Entities

User Group

Place Count 0.172 0.142

KDE 0.201 0.168

GeoCNTN 0.317 0.267

whereCEH denotes the cross entropy error and X̃e = so f tmax (Fe )
the predicted probability for each class.

5.2.1 Experiment Settings. Here we target on two specific tasks,

user classification and group classification in the Meetup-USA

dataset. In this experiment, we treat the tags of the users/groups

as their class labels. The set of users has 5372 tags in total and for

groups, there are 5045 tags annotated on them. For each entity, the

average tag number is 6. Considering the large number of tags, in

order to reduce the class number, we adopt the method proposed

by word2vec [27]. With this method, tags are at first embedded

into vectors and then clustered into 20 clusters with K-Means based

on their semantic distance. These 20 clusters finally serve as our

target classes. Moreover, in terms of the baseline methods, since

collaborative filtering methods such as PMF could not be directly

applied to solve this problem, we adopt the (A) place count and
(B) kernel density estimator (KDE) as two baselines, where the

former one counts the locations in global grids for each entity and

the latter applies KDE on these grids, similar to GeoMF [20]. We

then train a multi-label support vector machine to predict the class

the entity belongs to. To measure the performance, we use F1 score

[11] as our metric.

5.2.2 Performance. As shown in Table 3, we can see our model

outperforms the best baseline 11% in F1 score. Comparing the base-

line methods, we find that although they are both based on the

counts on grids, for KDE has more continuous features, it makes a

16% improvement. However, their F1 scores are still low for their

lack of information from local patterns, which may lead to the

situation that these trained models would give a global class to

each grid, e.g., shopping for New York City. GeoCNTN also uses

the information from observed local patterns, which may give a

much more accurate prediction. Hence it is not surprising that it

outperforms the classical feature extraction methods.

Combined with the first case study, our GeoCNTN indeed has the

flexibility and extensibility to be applied in a wide range of LBSN-

related tasks. Via combining the global and local geographical infor-

mation in a clever way, it should bring a noticeable improvement

with a large probability.

5.3 Visualization of Extracted Features
As a further validation of our GeoCNTN’s strength for unifying

global and local geographical information with the supervision

of observations in LBSN, we conduct a series of visualization ex-

periments with the users’ features we have obtained in the first

case study. With the aid of t-SNE [26] (an auxiliary method that

projects the high-dimensional data to a two-dimensional plane), we

plot the the latent factors of users from the PMFSR and the unified

features {Fe }e ∈E learned by GeoCNTN respectively in 8(b) and 8(c),

together with the users’ original locations in 8(a).

As shown in Fig. 8, it is hard to explain pure latent features

(Fig. 8(b)). However, our refined geographical feature is highly

interpretable (Fig. 8(c)). The first observed property is that our

model roughly preserves the geographical clusters. We say roughly
because users (see the features in Fig. 8(a) ) are divided into three

clusters in (c). In order to find out the reasons, we sampled two

users A and C, as plotted in Fig. 8(c). We found out that they have

no common groups, in contrast to 9 common groups with user

B, which means that although A and C are geographically closer,

the lack of common social interactions makes their features more

distant according to our model. What is more interesting, A and

D are much closer w.r.t our features than A and B because they

have 1 common group. We further study the relatedness between

A and B in Fig. 8(c). When we inspected the local patterns from the

preprocessed dataset (Fig. 5(a) & 5(b)), soon it became clear that they

have totally different local patterns. Whereas the local patterns of A

are relatively concentrated, those for B are scattered. This explains

whywe can infer that although they are close together in geography

and share several existing social links, they are relatively separated

in our feature diagram.

To sum up, our GeoCNTN has indeed extracted interpretable

features by unifying both global and local geographical information,

refined with observed information in LBSN.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed to study the problem of geographi-

cal feature extraction for entities in LBSN and described a novel

location-based embedding model with neural network structure

called GeoCNTN. It has three major contributions. First, we pro-

posed a curvature-sensitive fuzzy clustering algorithm (Geo-CMeans)

to obtain well-defined global and local representations from the

original geographical data. We then proposed a neural network

based learning model using convolutional neural network and an

embedding structure for local pattern and global geographical fea-

ture extraction respectively. Finally, we applied a neural tensor

network in order to discover higher-order correlations between

global and local features. With a 9% improvement in NDCG for link

prediction and a 11% improvement in F1 score for entity classifica-

tion, we have indeed validated the embedding efficacy of our model.

Furthermore, we validated the interpretability of the embeddings

learned by our model with a series of visualization tasks.

Our work demonstrates how to use deep neural networks to ex-

tract geographical features for entities in LBSN. We propose several

future directions of this work. First, it may be fruitful to extend

the proposed location-based embedding structure towards unsuper-

vised learning as shown in variational autoencoder (VAE) [16]. This

can potentially alleviate the rare observation problem in a given

LBSN. Another probable direction is to exploit and combine other

geographical contexts, such as trajectories and temporal informa-

tion of entities, with our current GeoCNTN for better embedding

performance. Finally, it is interesting to connect the study with

machine learning theories to further understand why GeoCNTN

can perform better than baseline models in various LBSN-related

tasks.
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