
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

BScout: Direct Whole Patch Presence Test for
Java Executables

Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, and Junyan Chen,
Fudan University; Xinyu Xing, Pennsylvania State University; Xiaohan Zhang,

Xin Tan, Min Yang, and Zhemin Yang, Fudan University

https://www.usenix.org/conference/usenixsecurity20/presentation/dai

BScout: Direct Whole Patch Presence Test for Java Executables

Jiarun Dai1, ¶, Yuan Zhang1, ¶, Zheyue Jiang1, Yingtian Zhou1, Junyan Chen1, Xinyu Xing2, Xiaohan
Zhang1, Xin Tan1, Min Yang1, and Zhemin Yang1

1School of Computer Science, Fudan University, China
2College of Information Sciences and Technology, Pennsylvania State University, USA

¶co-first authors

Abstract
To protect end-users and software from known vulnerabilities,
it is crucial to apply security patches to affected executables
timely. To this end, patch presence tests are proposed with the
capability of independently investigating patch application
status on a target without source code. Existing work on
patch presence testing adopts a signature-based approach. To
make a trade-off between the uniqueness and the stability
of the signature, existing work is limited to use a small
and localized patch snippet (instead of the whole patch) for
signature generation, so they are inherently unreliable.

In light of this, we present BSCOUT, which directly checks
the presence of a whole patch in Java executables without
generating signatures. BSCOUT features several new tech-
niques to bridge the semantic gap between source code
and bytecode instructions during the testing, and accurately
checks the fine-grained patch semantics in the whole target
executable. We evaluate BScout with 194 CVEs from the
Android framework and third-party libraries. The results show
that it achieves remarkable accuracy with and without line
number information (i.e., debug information) presented in
a target executable. We further apply BSCOUT to perform
a large-scale patch application practice study with 2,506
Android system images from 7 vendors. Our study reveals
many findings that have not yet been reported.

1 Introduction

Nowadays, it is very common for software developers to
borrow code from open-source projects and then integrate
them into their closed-source software products. According
to a recent study [17], open-source projects usually contain a
large number of vulnerabilities, which could be propagated to
closed-source software. To battle against n-day vulnerabilities
in closed-source software, it is crucial to know whether a vul-
nerability has been fixed in affected closed-source software,
i.e., whether a piece of software has applied a security patch
for a specific vulnerability. This kind of capability, known as

patch presence test [46], enables independent and quantitative
evaluation of software security for known vulnerabilities
and may urge software vendors to pay more attention to
vulnerability patching. With these features, a patch presence
test is an important complementary technique to protect
software and end-users from known threats.

To test the presence of a patch in target software, one
instinctive reaction is to perform vulnerable code search.
However, such techniques cannot be simply applied to per-
form a patch presence test. First, previous work on finding
vulnerable code utilizes function-level [29, 34, 42] or image-
level [17, 21] code similarity to pinpoint code difference.
However, such methods cannot provide sufficient granularity
for patch presence test, and thus inevitably introduce high
error rates in identifying patch existence. Second, existing
work on finding vulnerable code primarily leverages source-
to-source [29, 33, 42] or binary-to-binary [18, 22, 28] test. In
the patch presence test, it requires checking patch presence
in the source-to-binary fashion. Therefore, these methods are
not considered as feasible solutions.

Going beyond techniques in vulnerable code search,
FIBER [46] is another line of work that could be potentially
used for a patch presence test. It is built to perform patch
presence test for C/C++ binaries. Technically, FIBER
devises a two-step approach by generating binary-level patch
signatures from reference binary (built from reference source
code) and then leveraging binary-to-binary test for signature
matching on the target binary. To make a trade-off between
the uniqueness (i.e. the signature only exists in the patch
itself) and the stability (i.e. the signature is robust to benign
evolution of the codebase) of the signature, FIBER only
regards a small and localized part of the patch for signature
generation. An obvious limitation of this approach is that it
does not reflect the presence of the whole patch, thus it is
inherently unreliable. Furthermore, FIBER adopts an exact
signature matching mechanism on the target, which is hard
to tolerate the possible code customization on the signature
part. Actually, FIBER is evaluated with only 8 binaries, but
it has already reported several incorrect test results due to

USENIX Association 29th USENIX Security Symposium 1147

code customization, signature instability, etc (as confirmed in
[46]). Another limitation is that it requires to build the whole
project for generating binary-level signatures from source
code, and requires to choose the most similar image with the
test target for signature generation, which is quite inflexible.
These facts hinder its adoption to test a large volume of
binaries.

To address the limitations above, we argue a patch presence
test tool should have three properties – robustness, high
accuracy, and flexibility. By robustness, we mean a patch
presence test should rely on the whole patch rather than
a small and localized patch snippet for testing. By high
accuracy, we mean, whether a patch is applied or not, a patch
presence test should accurately report its status. By flexibility,
we mean a patch presence test should not depend on building
the reference source code of the test target which is not a fully
automated process in most cases.

In this work, we propose a new patch presence test tool,
BSCOUT to ensure the three properties above. Different from
existing techniques, BSCOUT leverages the whole patch to
directly test its presence in Java Bytecode from Source code
without generating signatures. The rationales of targeting
Java executables are three-fold. First, Java executables are
pervasive and ubiquitous, which have been demonstrated to
have numerous n-day vulnerabilities. Second, there is no
existing work on patch presence test for Java executables.
Third, we observe that the semantic information carried by
Java bytecode instructions may be exploited to facilitate patch
presence test. To the best of our knowledge, we are the first to
study patch presence testing techniques on Java executables
by leveraging the whole patch for a test.

Technical challenges. BSCOUT faces several non-trivial
challenges of directly performing a source-to-binary test
and accurately checking the presence of a group of source
code changes in an executable: 1) a security patch may only
introduce tiny changes [31], and we need to establish fine-
grained and accurate links for these changes between the
patch and the target executable; 2) since Java source code and
Java bytecode instructions are expressed at different language
layers and have different formats, it is difficult to perform
cross-layer code equivalence test; 3) some patch-changed
lines may occur multiple times in the target executable and,
therefore, it requires us not to simply check the presence of
the patch lines alone; 4) a patch may consist of several types
of changes (e.g., addition, deletion), and it is inappropriate to
adopt a uniform test strategy for each change type.

Basic idea. The design of BSCOUT is inspired by the
line-level patch generation and application practice [35],
which detects tiny modification by measuring the proportion
of patch lines present in the target executable. To perform
line-level presence testing, BSCOUT first proposes cross-
layer line-level correlative analysis. With this, it collects
language-independent features from both source code lines
and bytecode instructions. Then, it utilizes feature-based line-

level similarity analysis to link one source code line to several
aggregated bytecode instructions (marked as a bytecode line).
For bytecode instruction aggregation, BSCOUT leverages
the line number information in the target executable when
it is present. Otherwise, BSCOUT adopts learning-based
instruction segmentation to infer the bytecode line boundary.
To reliably test the presence of some patch-changed lines that
occur multiple times in the target executable, BSCOUT also
performs the line-level correlative analysis on the basis of
the entire functions. Following the line-level presence test,
BSCOUT further proposes patch-derived differential analysis.
With this, BSCOUT categorizes patch-changed lines into three
types (addition/deletion/modification). Then, it utilizes both
pre-patch source code (i.e. the source code before applying
the patch) and post-patch source code (i.e. the source code
after applying the patch) to accurately test the presence of
each type of changes in the target executable.

Results. We evaluate BSCOUT with 194 CVEs pertaining
to the Android framework and third-party Java libraries. The
experiments are performed on 15 Android system images
(called ROMs for short in the following), 261 Android apps,
and 28 desktop/server apps. Our experiment results show that
BSCOUT achieves remarkable accuracy of 100% and 96.9%
with and without the line number information provided. We
also observed that, when applied in a patch presence test,
existing work exhibits poor performance in terms of accuracy
and coverage.

Given the popularity of the Android platform and its
severe fragmentation issues [1], we also apply BSCOUT
to study the patch application practice with 2,506 real-
world Android ROMs from 7 vendors. Through our study,
we have some important findings that have not yet been
verified before. First, we discover Google usually patches
its own devices in a proactive manner even before releasing
the vulnerabilities to the public, while other vendors apply
security patches relatively slowly. Second, we find that,
rather than vulnerability severity or patch complexity, code
customization significantly affects the adoption of a security
patch. Third, we observe that all vendors have forgotten to
apply patches to affected phone models. This implies it is a
challenging task to manage patches among multiple software
product lines. Last but not least, we surprisingly find that, to
some extent, all vendors (including Google) over-claim the
security patch level in their devices. There are only about
9.4% of the ROMs correctly set the security patch level.

Use cases. Potential users of BSCOUT at least include:
1) since commercialized products (usually closed-source)
may inherit vulnerabilities reported in the integrated open-
source projects, third-party users of these products (e.g.
government agents, enterprise users, security companies) are
greatly interested in knowing the patching status of these
vulnerabilities; 2) developers or security testers who may
even have source code access, but may still want to perform
additional checks to guarantee that they have patched all n-

1148 29th USENIX Security Symposium USENIX Association

day vulnerabilities for their products before releasing them to
the public. For all these users, BScout is very helpful for its
ability to assess the patching status of products without their
source code.

In summary, we make the following contributions.

• We propose BSCOUT, a new technique to examine the
presence of a patch for Java executables.

• Using real-world test cases, we conduct a thorough
analysis and show that BSCOUT is effective and efficient
in patch presence test.

• Using BSCOUT as a tool, we conduct a large-scale
study and shed light on patch application practice in
the real world. Our study reveals several important and
interesting findings that have not yet been uncovered.

2 Challenges and Insights

We pick the security patch for CVE-2016-3832 [14] (an An-
droid framework vulnerability) as an example to demonstrate
the challenges in patch presence test and our insights to solve
these challenges. Generally, there are two kinds of bytecode
formats for Java executables: traditional stack-based Java
bytecode [9] and DEX bytecode [6]. Since DEX bytecode is
more comprehensible, we transform Java executables to DEX
bytecode with dx [3]. Figure 1 shows a patch snippet with
related code snippets from two Java executables. In Figure 1,
smali (which is the assembly language for DEX) is used to
present DEX instructions.

At first, we can find that the patch snippet in Figure 1
contains 3 addition lines (line 7, 13-14) and 1 deletion line
(line 12). Line 13-14 in Figure 1(a) are actually two broken
lines of a single statement, thus we use line 13 to refer both of
them in the following. As reported by Li et al. [31], security
patches tend to introduce fewer changes to source code than
general bug fixes (marked as Challenge-I: patch is small).
Thus, to reliably check the patch presence, we need to consider
all meaningful patch changes. Specifically, we need to check
that whether corresponding bytecode instructions could be
found in the target for every patch-changed line.

However, since Java source code and smali instructions
are expressed in different languages, it is not straightforward
to judge whether a statement in source code is equivalent
to several smali instructions or not (marked as Challenge-II:
cross-language-layer test). Fortunately, we observe that Java
bytecode contains much semantic information. Based on
this observation, we try to infer the equivalence between a
Java statement and several smali instructions based on their
shared semantic features. For example, line 7 in the patch
snippet is a function invocation statement that invokes the
“android.os.Parcel.readInt()” method and saves the function
return value to a temporary variable named “userId”. For this
statement, we can use the name of the invoked method as a

01@@ -1582,9 +1582,10 @@
02 data.enforceInterface(IActivityManager.descriptor);
03 ...
04 ...
05 int backupRestoreMode = data.readInt();
06 ...
07+ int userId = data.readInt();
08 ...
09 reply.writeNoException();
10
11@@ -2235,7 +2235,8 @@
12- if (mActivityManager.bindBackupAgent(app, mode)) {
13+ if (mActivityManager.bindBackupAgent(app.packageName, mode,
14+ UserHandle.USER_OWNER)) {

.line 1585
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v12
 ...
.line 1587
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v13
 ...
.line 2238
:try_start_c
iget-object v6, p0, L..ActivityManagerService;->mActivityManager:L..IActivityManager;
iget-object v7, p1, L..ApplicationInfo;->packageName:Ljava/lang/String;
const/4 v8, 0x0
invoke-interface {v6, v7, p2, v8}, L..IActivityManager;->bindBackupAgent(L..String;II)Z
move-result v6
if-eqz v6, :cond_b1

.line 1584
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v12
 ...
.line 2238
:try_start_c
iget-object v6, p0, L..ActivityManagerService;->mActivityManager:L..IActivityManager;
invoke-interface {v6, p1, p2}, L..IActivityManager;->bindBackupAgent(L..ApplicationInfo;I)Z
move-result v6
if-eqz v6, :cond_b1

(a) Patch Snippet
for CVE-2016-3832

(c) Smali Snippet in
Target_2

(b) Smali Snippet
in Target_1

Figure 1: Patch Snippet for CVE-2016-3832 with code
snippets from two target Java executables.

feature to locate corresponding smali instructions in the test
target. The name of the assigned variable is not used here,
because it is a temporary variable whose name is not kept
after compilation. Through this feature, we can find line 1585
and line 1587 in the first target, and line 1584 in the second
target can link to line 7 in the patch snippet. Similarly, we
can also find all candidate smali instructions in the test target
for each patch-changed line with feature-based line-to-line
similarity analysis.

Based on the line-to-line link between patch lines and
target bytecode instructions, we shall further judge whether
the patch is present or not. For line 7 in the patch snippet, we
find 2 linked lines in the first target and 1 linked line in the
second target. Since line 7 is an addition line in this patch,
we may simply mark both targets as patched at this time.
However, we may also find that line 5 in the patch snippet
(just as the same as line 7) can also link to line 1585 and
line 1587 in the first target and line 1584 in the second target,
while line 5 exists before the patch is applied. When we take
both line 5 and line 7 in the patch snippet into account, we
find that both of them have a linked line in the first target,
while only one of them can have a linked line in the second
target (marked as Challenge-III: patch-changed lines may
occur multiple times). Based on this observation, it is easy to
recognize the second target as unpatched and the first target as
patched. The lessons we learn here are that, if patch-changed

USENIX Association 29th USENIX Security Symposium 1149

lines occur multiple times in the source code, it is hard to use
the patch alone to give a reliable patch presence test result.
For patch-added lines (such as line 7), we had better utilize
the whole post-patch method for the test.

For line 12 and line 13 in the patch snippet, we find that they
are quite similar for sharing the same feature of invoking the
“android.app.IActivityManager.bindBackupAgent()” method.
After line-to-line similarity analysis, both of them are linked
to line 2238 in the first target and are linked to line 2238 in
the second target. Because line 12 is a deletion line and line
13 is an addition line, from the perspective of line 12 we may
flag both targets as unpatched, but from the perspective of line
13, we should flag both targets as patched. This contradictory
result is caused by the fact that we do not recognize line 13 as
a modification line on top of line 12 (marked as Challenge-IV:
patch has different types of changes). By performing a fine-
grained analysis on line 12 and line 13, we can find that line
13 invokes the method with three arguments, while line 12
invokes the method with two arguments. Considering this
slight difference, we find line 2238 in the first target is more
similar to line 13 than line 12 in the patch, while line 2238 in
the second target is more similar to line 12 than line 13 in the
patch.

Based on the checking results from line 7, line 12 and line
13, we meet a unified judgment: the executable in Figure 1(b)
applies the patch, while the executable in Figure 1(c) does
not apply the patch. Note that in the above example, we use
the line number information in smali files to represent several
smali instructions for brevity, which does not necessarily
mean our tool depends on this information.

3 BSCOUT Approach

Following the example in §2, the overall architecture of
BSCOUT is shaped in Figure 2, which consists of two steps:

Step 1: Cross-layer Line-level Correlative Analysis. Ba-
sically, it takes the pre-patch/post-patch reference source
code (not the source code for the target executable) and
target Java executable as input, and generate two line-to-line
maps (which associate raw Java bytecode instructions to Java
source code lines) between them as output. It works by first
extracting cross-layer features between Java source code and
Java bytecode (see details in § 3.1) and then leveraging these
features to construct a line-to-line map in the scope of the
whole Java method (see details in § 3.2).

Step 2: Patch-derived Differential Analysis. Based on
two line-to-line maps between pre-patch/post-patch source
code and target Java executable, it analyzes the fine-grained
changes in the patch to guide the patch presence judgment.
Specifically, it analyzes the patch to recognize not only the
addition/deletion lines but also the modification lines (see
details in § 3.3). Then, for each kind of patch-changed lines,
it tests the presence of them in the target by comparing

the match results between the target executable and the pre-
patch/post-patch source code (see details in § 3.4).

3.1 Feature Extractor
Obviously, it is hard to perform equivalence tests between
Java source code lines and Java bytecode instructions using
existing techniques such as theorem proving [24]. Instead,
we approximately test whether a Java source code line is the
same with several Java bytecode instructions by measuring
how many semantic features they share. To support cross-
layer line-level correlative analysis between Java source code
and Java bytecode, it is quite important to figure out what
features to extract and how to extract.

3.1.1 Feature Set

Many types of features can be extracted from Java source
code and bytecode instructions. However, not every feature is
appropriate. It should meet two properties.

• Language-independent. A selected feature should exist
in both source code and smali code. For example,
temporary variable names only exist in source code.
Thus, it is inappropriate for feature selection.

• Consistently-extracted. An appropriate feature should
be extracted consistently from both source code and
bytecode. For instance, we find that array-creation smali
instructions are generated in method invocations with
variable-length arguments, while there are no explicit
array creations in corresponding source code. Therefore,
array-creation is not an appropriate feature.

Ideally, all the features that fit the above two properties
should be utilized. Actually, we only consider a small number
of significant features that appear in common cases (as listed
in Table 1). Future work could explore more features to get
better performance. Even so, our prototype achieves quite
good precision and recall through the evaluation (see § 4.1).
In all, we consider five categories of features: constant values,
method invocations, field accesses, object creation and special
instruction types. Several features in Table 1 exclude some
exceptional cases. For example, for method invocation feature,
we do not consider those methods that may be generated by
compilers, because these invocations may only exist in smali
while do not explicitly exist in source code.

3.1.2 Feature Parser

For smali instructions and Java source code, we use separate
parsers.

Parsing smali Instructions. We use dexlib [7] to parse
smali files. All the information in a smali file can be accessed
with this library, such as classes, methods, instructions, and
labels. As Table 1 shows, literals are quite important features

1150 29th USENIX Security Symposium USENIX Association

Patch (.diff)

Patch
Analyzer

Patch
Presence
Checker

Line-to-line Map for Pre-patch

Line-to-line Map for Post-patch

Filtered Patch-
changed Lines

Addition Lines

Deletion Lines

Modification Lines

Feature
Extractor

Line-to-line
Match Engine

Target Java
Executable

Pre-patch
Reference

Source Code

Post-patch
Reference

Source Code

.java

.smali

.java

Figure 2: Architecture of BSCOUT. There are two core techniques: cross-layer line-level correlative analysis and patch-derived
differential analysis. The first technique is capable of generating a line-to-line map between a Java source method and a Java
bytecode method by leveraging language-independent features, while the latter technique takes the line-to-line maps between
pre-patch/post-patch reference source code (not the source code for the target executable) and target Java executable as input and
utilizes the characteristics extracted from the patch itself to give a patch presence test result.

Table 1: Selected features from both Java source code and Java bytecode instructions.
Feature Category Feature Format Values Selected
Constant Values Literals String literals, integer/long numeric literals
Method Invocations Method name with argument length All methods except compiler-generated methods, such as toString, valueOf, append.
Field Access Field name All fields
Objection Creation Class name All classes except those used in compiler-generated code such as Object, StringBuilder
Special Instruction Type Normalized instruction types throw, monitor, switch, instance-of, return

in BSCOUT. In smali, literals are first loaded into virtual
registers before they are used in smali instructions. Thus, we
can not directly acquire the literals from operand values. To
extract constant values from smali instructions, we implement
constant propagation analysis. We scan the whole method to
construct a table to keep all the virtual registers that have been
assigned with constant values and never be overwritten by
following instructions. When we want to check whether an
operand register holds a constant value, we can simply look
up its name in the table to get its pre-loaded constant value.

Parsing Java Source Code. Extracting semantic features
from Java source code is more sophisticated than from smali
instructions because Java language has complicated gram-
mar, e.g. anonymous inner classes, nested class definitions.
Meanwhile, we can neither build the source code project into
executables for feature extraction, because building a project
is not a fully-automated process which may require frequent
manual intervention. Even for projects that use package
dependency management tools such as Maven and Gradle, it
is still non-trivial to set up the building environment for them.

Therefore, we have to parse Java grammars for feature
extraction. After investigating several Java source code ana-
lyzers, we choose to build our feature extractor on Spoon [39]
which is actively maintained and supports new Java features.
It works by generating abstract syntax trees (AST) from
Java source files, so our feature extraction procedure is

implemented by traversing the ASTs. For a statement that
occupies more than one textual line in the source code (e.g.
line 13 and line 14 in Figure 1), we treat the split lines as a
single logical line.

Literals Normalization. Literals appear as variable names
(such as final static fields) in source code, but occur as constant
values in disassembled smali code. An example is the variable
“UserHandle.USER_OWNER” in Figure 1(a) and its constant
value of “0x0” in line 2238 of Figure 1(b). To support sound
feature comparison, we need to normalize literals extracted
from Java source code. Our solution is to construct a global
constant table by parsing all Java source code files. When
we come across a variable in Java source code, we can look
up the table to test whether it is a constant variable and use
its constant value to construct features. Besides, we notice
that Java compiler will transform string literal concatenation
statements in Java source code to a concatenated string literal
in smali. To correctly match these literals, we also implement
this optimization during literal extraction from source code.

3.2 Line-to-line Match Engine
To perform line-level correlative analysis, we first need an
oracle to test whether a source code line and several smali
instructions are equivalent. Our idea is to test how many
semantic features they share.

USENIX Association 29th USENIX Security Symposium 1151

Equivalence Oracle. For convenience, we designate s and
b as two feature sets extracted from a source code line and
several bytecode instructions respectively. We use Jaccard
similarity [44] between s and b to define the equivalence
oracle as following where TLineSimilarity is a predefined
threshold between 0 and 1. We do not use a more complicated
algorithm here because Jaccard similarity works well enough
through evaluation.

IsEquivalent(s,b) : Jaccard_Sim(s,b)>= TLineSimilarity

Notice that if a patch-changed line occurs multiple times in
source code, it is unreliable to simply test its presence in smali
code (see line 5 and line 7 in Figure 1 as an example). Thus,
we perform a line-to-line match in the whole method scope to
utilize code context. According to the presence of line number
information in smali, we adopt different matching algorithms.

3.2.1 When line number information is present

Modern Java compilers such as OpenJDK, Oracle JDK
and Android SDK all annotate line number information for
compiled Java code in .class/.dex files. This information may
ease the aggregation of raw smali instructions generated from
the same Java source line together. Nonetheless, it is worth
noting that when line number information is not present,
BSCOUT can also perform an effective line-to-line match,
as described in the next section.

Line Aggregation. When line number information is
present in the smali file, baksmali [15] generates a .line marker
with an integral line number at the first smali instruction for a
source code line (see examples in Figure 1) when transform-
ing DEX files to smali files. We split raw continuous smali
instructions into blocks according to the .line marker. We
designate a .line marker along with its following instructions
as an aggregated line. In the following steps, BSCOUT will
construct a map between Java source lines and aggregated
Java bytecode lines.

After aggregating raw smali instructions into blocks ac-
cording to .line marker, we find some exceptional cases that
need to be further purified.

• Two identical line blocks with same line number. We
find some line blocks duplicated in the smali file. For
example, baksmali generates an identical finally block
before each return instruction in the try block. Since
there is only one finally block in the source code, we
eliminate redundant finally blocks in the smali code and
only keep one.

• Two different line blocks with same line number. We find
that some line blocks are different but share the same
line number. This is because compilers may compile
a single Java statement into several line blocks. For
example, a single Java switch statement is compiled

into two-line blocks: one block starts with a packed-
switch/sparse-switch smali instruction that indicates
switch table address, and the other block starts with
a leading .switch marker to keep the concrete switch
implementation. For these blocks, we can simply merge
them into one block.

Line-to-line Match. With the help of aggregated line
information, precise matching can be achieved. Specifically,
we sort these aggregated lines by their line numbers to
facilitate the match process, and set three requirements to meet
for the match results: first, each source code line should link
to at most one aggregated smali line and vice versa; second, a
source code line should not be matched to an aggregated smali
line which has a bigger line number than previous matched
smali line; third, we want to match as many source code
lines/aggregated smali lines as possible.

In fact, from the above description, we have transformed the
problem of the line-to-line match into the classical problem
of finding the longest common subsequence. We apply an
existing optimized algorithm in finding the longest common
sequence, named Myers algorithm [36, 41] (which is also
used by git-diff command) to BSCOUT to find an optimal
match between source code lines and aggregated smali lines.
Based on the line-to-line match result, we can judge whether
a source code line is present in a Java executable.

3.2.2 When line number information is absent

When line number information is not present in executables,
it is hard to recognize the exact line boundaries in continuous
smali instructions. A straightforward idea may be searching
smali instructions for every Java source code line in the
whole method space. However, the unrestricted search space
would cause low precision and huge overhead. Fortunately,
we observe that human experts have patterns to group
raw bytecode instructions. With this insight, we first use
machine learning to automatically group raw continuous
smali instructions into segments, and then perform matching
between source code lines and smali segments.

Learning-based Instruction Segmentation. In general,
we treat instruction segmentation as a sequence labeling
problem [37]. Specifically, we want to assign every smali
instruction with one of the four labels: S (a segment with
a single instruction), B (begin of a segment), M (middle
of a segment) and E (end of a segment). Our training
data is constructed from smali files of 23 Android ROMs
and 2,064 Maven packages. We exclude those smali files
without line number information, and the remaining can
be automatically labeled with S/B/M/E. In all, we extract
about 1 million labeled smali methods as the training set
and 10 millions of labeled smali methods as the testing
set. Our model is trained with Conditional Random Fields
(CRFs) [30] which is a common context-sensitive algorithm
for sequence labeling. More specifically, we use CRF++ [5]

1152 29th USENIX Security Symposium USENIX Association

// Case A
String msg = uri.getPath();
EventLog.writeEvent(0x534e4554, msg);

// Case B: compound statement
EventLog.writeEvent(0x534e4554, uri.getPath());

Figure 3: Different cases compiled to same smali code.

(an open-source implementation of CRFs) and set cost
parameter to 1 and termination criterion to 0.0001 to train the
model. Considering instructions have diverse formats, we also
normalize the smali instructions by removing the instruction
operands. Our trained model accepts raw smali instructions
as input and outputs labels for them. Based on the instruction
labels, we can easily group them into segments. Through
the testing set, our model shows an accuracy of 91.7% in
instruction labeling. As our evaluation shows (see §4), this
accuracy is good enough for our tool, so we do not try other
algorithms for model training.

Two-round Line-to-segment Match. Based on the seg-
mentation results, we first perform a one-to-one match
between source code lines and instruction segments using
the algorithm of finding the longest common subsequence
(the same as in § 3.2.1). However, not all source code lines
can be matched with smali segments in this round due to the
existence of compound statements. We give an example in
Figure 3 to demonstrate this problem. In this figure, case
B is a compound statement of two statements in case A.
Our instruction segmentation model inclines to group the
compiled smali instructions of case B into two segments.
Therefore, the line-level similarity between the compound
source code line and either smali segment is hard to reach
the TLineSimilarity threshold. As a result, this kind of compound
statement is not matched during the first round.

For these unmatched source code lines, we perform a
second round match. Figure 4 presents the overall design. This
round of match starts sequentially from the first unmatched
source code line. For this unmatched source code line, we
seek matching candidates in the space of all the unmatched
smali instructions just after the previous matched smali
segment (see the matching candidate scope for the first
unmatched line in Figure 4 as an example). Specifically,
for each source code line, we set up a sliding window (see
Figure 4) with variable-length to enumerate all possible smali
instruction sequences. We calculate the similarity between
all possible sliding windows and the source code line and
select the one that hits the highest similarity. If the similarity
between the smali instructions in the selected sliding window
and the source code line exceeds the predefined threshold
(TLineSimilarity), we mark a line-to-line match for them and
eliminate the instructions in the sliding window from the
following search. Similarly, we search smali instructions for
remaining unmatched source code lines.

Sliding Window 0

Sliding Window 1

Source Method Smali Method

Matching candidate scope
for first unmatched line

First Unmatched Line

Matched Parts

Matching Relationship

Unmatched Parts

Figure 4: Second-round match for unmatched source code
lines with a sliding window, which enumerates all possible
matching pairs between unmatched Java source lines and
smali segments to determine the best matching.

With the techniques above, BSCOUT successfully performs
a line-to-line match based on the features extracted from Java
source code and smali instructions, regardless of the presence
of line number information. The constructed line-to-line maps
will be further utilized by BSCOUT in a patch presence test.

3.3 Patch Analyzer

This module analyzes the whole patch to guide patch presence
judgment. A patch is usually generated by diff command. As
shown in Figure 1(a), a patch usually consists of multiple
change blocks. Each block starts with a block header line,
which indicates the position of following changes occurred in
pre-patch source code and post-patch source code. From the
block header, we can accurately look up each changed line
and locate the affected method/class in the source code.

Not all changed lines in a patch should be considered in a
patch presence test. Specifically, we perform a difference
check against two kinds of changes: in-method changes
and out-of-method changes. As their names indicate, out-
of-method changes occur outside of method implementations
(e.g. declaring a new field in a class), and in-method changes
affect the concrete method implementations. Since most
Java vulnerabilities are logic flaws, they should be fixed by
modifying method logic. Besides, our study on 194 real-
world security patches shows that nearly 80% of patch
changes belong to in-method changes (as presented in
Table 11 of Appendix A). Thus, we believe out-of-method
changes can be ignored in testing patch presence. Under
the assumption above, BSCOUT would fail on extreme
cases where a patch only contains out-of-method changes.
Fortunately, we do not encounter a Java patch that contains
only out-of-method changes in our evaluation. Besides, we
exclude code comments in the patch from the test scope.

Generally, all changes in source code can be represented as
addition and deletion. However, to fully represent the patching
behaviors, we further introduce modification as a new kind of

USENIX Association 29th USENIX Security Symposium 1153

code changes. Take line 12 and line 13 in Figure 1(a) as an
example, the two lines actually represent a fine modification
to line 12, while diff command generates a line to mark
the deletion of the old line (line 12) and another line to
mark the addition of the new line (line 13). Motivated by
the example above, we adopt a heuristic-based approach to
recognize modification lines: we regard adjacent deletion and
addition line with similar features as a modification line. To
be specific, when the similarity between two adjacent deletion
and addition line is larger than the threshold TLineSimilarity, we
view these two lines as a single modification line. We also
further expand the scope from one line to several consecutive
lines to recognize a block of continuous modifications.

3.4 Patch Presence Checker
This module utilizes cross-layer line-level correlative analysis
and patch analysis results to make a final judgment of patch
presence. Our key idea is inspired by the lessons learned from
patch presence test at the source-code level, i.e. checking
how many patch-changed lines can be found in the source
code. Similarly, we give patch presence test results on Java
executables by checking how many patch-changed lines can
be recognized in the target.

The challenge here is that there are several types of changes
in a patch, we could not simply adopt a uniform presence test
strategy for them. For example, to test whether an addition
line is present in the test target (see line 7 in Figure 1(a)), we
should compare the post-patch source code with the target
bytecode, while to test a modification line (see line 12 and
line 13 in Figure 1(a)), we should leverage both the pre-
patch source and the post-patch source code to compare.
Therefore, according to the three types (addition, deletion,
and modification) of patch-changed lines, different strategies
are used in the presence test.

The overall test strategy is shaped in Algorithm 1. We first
use cross-layer line-level correlative analysis to construct two
line-to-line maps between the pre-patch/post-patch source
code and the target bytecode. Second, we use separate
presence test strategies for addition/deletion/modification
lines in a patch.

• Line Addition. To test the presence of an addition line, we
query the line-to-line map between the post-patch source
code and the target bytecode. If this line is matched, we
think this line is present in the target bytecode.

• Line Deletion. Similarly, to test the presence of a deletion
line, we query the line-to-line map between the pre-patch
source code and the target bytecode. If this line is not
matched, we think the target has applied this deletion.

• Line Modification. It is more complicated to test the
presence of a modification line. We need to query both
the line-to-line maps between the pre-patch/post-patch

source code and the target bytecode. If this line has a
higher matched similarity in the post-patch source code
map than in the pre-patch source code map, we think
this modification is applied in the target bytecode.

At last, a final result is given based on the presence status of
every patch-changed line. Since a patch may contain multiple
changed lines and we can not figure out which line is more
important than another, we take all of them into account
(except those filtered by Patch Analyzer) to make a decision.
To reflect the significance of each patch-changed line, we use
the number of the features extracted from each patch-changed
line as its weight. Overall speaking, we calculate the patch
presence ratio from the sum of the weights for all matched
patch-changed lines and use a threshold (TPatchPresenceRatio) to
decide whether a patch is present or not.

Algorithm 1 Patch Presence Test
Input: Ppre: pre-patch source code, Ppost : post-patch source code,

Psmali: smali code, Patch: patch-changed lines
Output: patch presence result

1: Line2lineMappre←Match(Ppre,Psmali)
2: Line2lineMappost ←Match(Ppost ,Psmali)
3: f ound← 0
4: total← 0
5: for each line ∈ Patch do
6: total← total +FeaturesIn(line)
7: if isAddition(line) then
8: if line is matched in Line2lineMappost then
9: f ound← f ound +FeaturesIn(line)

10: end if
11: end if
12: if isDeletion(line) then
13: if line is not matched in Line2lineMappre then
14: f ound← f ound +FeaturesIn(line)
15: end if
16: end if
17: if isModi f ication(line) then
18: simpost ← sim_lookup(Line2lineMappost , line)
19: simpre← sim_lookup(Line2lineMappre, line)
20: if simpost > simpre then
21: f ound← f ound +FeaturesIn(line)
22: end if
23: end if
24: end for
25:
26: if f ound/total > TPatchPresenceRatio then
27: return true
28: else
29: return f alse
30: end if

4 Evaluation

We implement a prototype of BSCOUT within 9,290 LOC
Java code. In detail, we utilize Spoon [39] as the front-end to

1154 29th USENIX Security Symposium USENIX Association

parse Java source code, dexlib [7] to parse smali code, and
baksmali [15] to transform Java executables to smali format
for further analysis. To support traditional stack-based Java
bytecode [9], BSCOUT transforms it into DEX bytecode [6]
with the help of dx [3].

We evaluate BSCOUT with real-world programs and
security patches. Though FIBER [46] is the most relevant
work to BSCOUT, it only targets C/C++ binaries and it is
non-trivial to make it support Java executables. Thus, we
can not use it as our baseline. Actually, to the best of our
knowledge, BSCOUT is the first patch presence testing tool
on Java executables. Nevertheless, to illustrate the necessity
of designing a dedicated tool on patch presence test for Java
executables such as BSCOUT, we conduct experiments to
report how two closely-related techniques behave when used
on patch presence testing: version pinning and function-level
similarity. It is worth noting that these techniques do not
claim they are effective in patch presence testing. Here, we
just want to show that the problem of patch presence testing
could not be easily solved by applying existing techniques.

4.1 Results of BSCOUT

We perform experiments on two versions of BSCOUT to
measure its effectiveness:

• BSCOUT which utilizes line number information (if
present) in Java executables;

• BSCOUT4 which does not consider the line number
information in Java executables (even when it is present).

This setting helps us to know the effectiveness of BSCOUT
in the worst case (i.e. all line number information is stripped
away). The evaluation is performed with two representative
CVE datasets: Android framework vulnerabilities and Java
library vulnerabilities.

4.1.1 Android Framework Vulnerabilities

Considering the popularity of Android and its severe fragmen-
tation issues, we first use Android framework vulnerabilities
to evaluate BSCOUT. In total, we randomly select 150 CVEs
from Android Security Bulletin [2], ranging from August
2015 to July 2019. The patches of these CVEs are all written
in Java. The affected Android versions of these CVEs are
listed in in Appendix A.

Parameter Setting. Before evaluation, we need to set
two parameters for BSCOUT: TLineSimilarity in equivalence
oracle (see §3.2) and TPatchPresenceRatio in Patch Presence
Checker (see §3.4). For TLineSimilarity, we favor a low value
because our line-level equivalence oracle is built on feature-
based similarity, which is more coarse-grained than real
semantic equivalence testing. TPatchPresenceRatio can make a
trade-off between false positive rate (FPR) and false negative

rate(FNR). In the patch presence test, we favor low FPR. To
set an appropriate value for them, we build a set of ROMs from
AOSP (Android Open Source Project) and label the patch
status for them as ground truth. Specifically, we build all tags
for all branches in AOSP and, finally, get 215 unique images.
We designate this dataset as Dataset_ROM_Reference. By
carefully tuning TLineSimilarity and TPatchPresenceRatio, we can
determine the best value of them under which BSCOUT
achieves the best performance on Dataset_ROM_Reference.
Finally, we set TLineSimilarity to 0.7 and TPatchPresenceRatio to 0.6.

Ground Truth. We download 15 Android ROMs from 6
vendors (marked as Dataset_ROM_GT) to measure BSCOUT.
For each ROM, we unpack it and collect its affected CVEs,
and manually validate the patch status for each CVE. To avoid
mistakes in manual labeling, all the results are verified by two
security experts. This dataset is presented in Table 2.

Results. According to the results in Table 3, the accuracy
for either BSCOUT or BSCOUT4 is quite high, even though
the test is performed directly from source code to bytecode
instructions. In particular, BSCOUT achieves a remarkable
accuracy of 100%. It clearly demonstrates that BSCOUT can
effectively recognize fine-grained code changes at the test
target by leveraging code features from both the Java source
code layer and the Java bytecode layer. Besides, we note that
both BSCOUT and BSCOUT4 exhibit no false positives. Since
there is no false-negative case for BSCOUT, we manually
inspect the 31 false-negative cases reported by BSCOUT4,
and find that all these cases result in some wrong mappings
between Java source code lines and smali instructions. After
inspecting these mappings, we find they might be corrected
by enhancing current learning-based instruction segmentation
(see § 3.2.2) with the control flow-level features, and we leave
it as our future work.

Efficiency of BSCOUT. We measure the test time of
BSCOUT on Dataset_ROM_GT with a Windows 10 64-bit
desktop computer (Intel i3-4170, 3.70GHz CPU and 12 GB
memory). We run the tests one by one and collect the time
cost in performing a patch presence test for each ROM-CVE
pair. The detailed time cost for each ROM is presented in
Table 2. Note that although a whole ROM contains millions of
functions, the patches only affect a small number of functions.
Thus, it is very fast for BSCOUT to locate the patch-related
functions and check patch presence on them. In general, the
average test time for each CVE is 0.18 seconds. Some CVEs
cost more time than the average because their patches change
very large methods which need more time to perform the
line-to-line match. In the same way, BSCOUT4 is measured
to have an average time cost of 13.9 seconds for each test.

4.1.2 Java Library Vulnerabilities

Since Java libraries are widely used to build applications for
Android devices, desktops, servers, etc., it is also important to
check whether they have patched known vulnerabilities. Thus,

USENIX Association 29th USENIX Security Symposium 1155

Table 2: Manually-labeled Patch Presence Status for 15 Collected Android ROMs (Dataset_ROM_GT) and The Test Time for
These ROMs by BSCOUT.

Model
Android
Version

of
Affected CVEs1

of
Patched CVEs

of
Unpatched CVEs

Test Time
by BSCOUT (s) ROM Name

Google Pixel XL 7.1.2 25 7 18 8.39 / 0.342 marlin-njh47d-factory-5ba1ef
Google Pixel 7.1.2 25 8 17 4.70 / 0.19 sailfish-nzh54d-factory-127f0583
Google Pixel 2 XL 8.1.0 29 13 16 1.08 / 0.04 taimen-opm4.171019.021.r1-factory-dc
Xiaomi MAX 2 7.1.1 31 15 16 6.83 / 0.22 miui_MIMAX2_7.9.14_5b67c71517_7.1
Xiaomi MAX 7.0.0 50 33 17 9.01 / 0.18 miui_MIMAX_7.9.8_5d955edf66_7.0
Xiaomi Redmi 5 8.1.0 32 32 0 3.34 / 0.10 miui_HM5_V10.3.3.0.ODACNXM_c9b6
Meizu MX5 5.1.0 9 7 2 1.53 / 0.17 MX5_6.3.0.0_cn_20180129144322
Meizu PRO 6 7.1.1 30 13 17 7.17 / 0.24 PRO_6_6.3.0.2_cn_20180327102019
Vivo X9 7.1.1 27 12 15 6.33 / 0.23 PD1616_D_7.12.7-update-full
Vivo X20 7.1.1 27 17 10 7.72 / 0.29 PD1709_A_1.16.8-update-full
Vivo NEXS 8.1.0 33 24 9 4.53 / 0.13 PD1805_A.1.23.5-update-full_15501
Oppo R11s Plus 7.1.1 33 24 9 6.91 / 0.21 R11sPlus_11_OTA_0170_all_GfK0Zhg
Oppo R9s Plus 6.0.1 62 49 13 9.37 / 0.16 R9sPlus_11_OTA_0090_all_2DQUWSz
Oppo R11s 8.1.0 34 26 8 5.44 / 0.15 R11s_11_OTA_0380_all_Q5Zf0LQ9SM
Samsung Note 9 8.1.0 27 17 10 3.78 / 0.13 LRA-N960U1UES1ARH6-20180922125
1 Note that the number of affected CVEs may be different for ROMs with the same Android version, because vendors may remove some unwanted modules

during customization.
2 8.39 means the total test time, while 0.34 means the average test time.

Table 3: Effectiveness Results of BSCOUT on
Dataset_ROM_GT and Dataset_Apps.

Tool Android ROMs Java Apps Overall

TP TN FN FP Acc. TP TN FN FP Acc. Acc. FPR

BSCOUT 297 177 0 0 100% 291 410 0 0 100.0% 100% 0.0%
BSCOUT4 266 177 31 0 93.5% 286 410 5 0 99.3% 96.9% 0.0%

we collect some real-world Java (covering Android/desk-
top/server platforms) apps for evaluation.

Ground Truth. To ease the ground truth construction
of patch status on Android apps, we write a crawler to
download 4,561 open-source apps from F-Droid (which is
a repository for open-source Android apps) [8]. Through
parsing the Gradle build files, we recognize all the libraries
that are used by each app and then collect all the reported
vulnerabilities for these libraries by querying NVD [11]. From
these vulnerabilities, we randomly select 15 CVEs which
affect 11 libraries. We further find that these libraries are
incorporated in 261 apps. Among the 261 apps, we observe
that 123 apps can also be found in Google Play and 81 apps
have ProGuard enabled. Similarly, we collect 12 server apps 1

and 16 desktop apps 2 for experiments, and find that they
incorporate 12 Java libraries affected by 29 CVEs. We mark
these 289 (=261+12+16) apps as Dataset_Apps. For each
CVE, we manually label the patch status on these apps. In
all, we construct 364 and 337 App-CVE pairs for Android
apps and desktop/server apps as ground truth respectively.

1WebSpere(70011), WebLogic(12.2.1.3.0), Atlassian Confluence(10
versions)

2JEB Android Decompiler(3.0, 3.1), JEB Intel Decompiler(3.1), JEB
ARM Decompiler(3.1), JEB MIPS Decompiler(3.1), JEB WebAssembly
Decompiler(3.1), JEB Ethereum Decompiler(3.1), IntelliJ IDEA(10 versions)

The whole library dataset and CVE dataset are presented in
Table 10 of Appendix A.

Tools Setup. Due to name obfuscation, BSCOUT can not
directly locate patch-changed Java methods in 9 Android
apps. For these cases, we leverage existing code similarity
techniques [19] to recognize patch-changed methods for
further patch presence test. Note that code similarity analysis
may perform well in searching similar functions from a large
space, but meets constraints in patch presence test due to low
precision (as evaluated in §4.3). Besides, we use the same
parameter setting as § 4.1.1 here.

Results. The detailed results are presented in Table 3. Over-
all, both BSCOUT and BSCOUT4 are remarkably effective by
achieving an accuracy of 100% and 96.9% respectively with
no false positives. By checking the 5 false negatives incurred
by BSCOUT4, we find they are also caused by wrong line-to-
line mappings which we plan to improve in the future.

4.2 Results of Version Pinning

Version pinning tools can pinpoint the most similar executable
to a given target from a set of reference executables. Though
version pinning tools do not directly test patch presence, two
state-of-the-art tools (OSSPolice [21] and LibScout [17]) eval-
uate their performance in version pinning by distinguishing
patched/unpatched versions of Java executables. Therefore,
we conduct experiments to measure their effectiveness in
the patch presence test. Specifically, we fetch the source
code of OSSPolice [13] with commit hash af09514, and the
source code of LibScout [10] with commit hash 4c14ca3.
Furthermore, we also update some library dependencies for
them to fix issues in parsing DEX files.

Experiments Setup. Since both tools require a large set of

1156 29th USENIX Security Symposium USENIX Association

Table 4: Results of LibScout and OSSPolice on
Dataset_ROM_GT (containing 474 ROM-CVE pairs).

Tool Cannot Give Results Can Give Results

Count Ratio TP TN FP FN Acc. FPR

LibScout 455 96.0% 12 1 0 6 68.4% 0%
OSSPolice 5 1.1% 69 168 6 226 50.5% 3.5%

reference images to pinpoint, we only apply OSSPolice and
LibScout on Dataset_ROM_GT to ease experiment prepara-
tion. Specifically, we leverage the Dataset_ROM_Reference
(consisting of 215 unique ROMs) in §4.1.1 as the reference
set. Meanwhile, we also manually label the patch status of
each CVE for all executables in the reference set. For each
test target, we run OSSPolice and LibScout to recognize the
most similar executable(s) from the reference set and use the
patch presence status of the recognized executable(s) as the
result of patch presence test.

Results. Table 4 presents the results of LibScout and
OSSPolice in testing patch presence on Dataset_ROM_GT
(containing 474 ROM-CVE pairs). We find that LibScout can
not give results for 96.0% of cases and OSSPolice can not give
results for 5 cases. There are two scenarios for them to give no
result: 1) no image in the reference set is found to be similar to
the given target, due to the heavy code customization placed
on the test target; 2) at least two images are found to be
quite similar to the given target with the same similarity, but
they have different patch presence status. The cause of this
scenario is that the code features considered by the two tools
are too coarse-grained to differentiate patch changes. In the
cases that OSSPolice and LibScout could give results, their
accuracy is still significantly lower than that of BSCOUT.
This is mainly due to that the image-level code similarity
is too coarse-grained to reliably reflect the patch presence
status. Overall speaking, although version pinning tools can
distinguish different versions, they are too coarse-grained to
test patch presence.

4.3 Results of Function-level Similarity Test

Function-level similarity testing is frequently used to locate
vulnerable function clones [23, 40, 43]. Intuitively, this line
of techniques can also be applied to patch presence test by
measuring whether the test target is more similar to the pre-
patch reference function or the post-patch one. Hence, we
also perform some experiments to report the effectiveness
of leveraging function-level similarity to test patch presence.
As presented in §4.2, our experiments are also conducted on
Dataset_ROM_GT (containing 474 ROM-CVE pairs). Since
centroid [19] is widely used on Android platform [20, 21] to
calculate Java method similarity, we leverage this algorithm
to measure function-level similarity in this experiment.

Experiments Setup. From the 150 CVEs in

0.00 0.05 0.15 0.200.10
Threshold

20

40

60

80

R
at

io
(%

)

Can Give Result
Can Give Correct Result

Figure 5: The ratio of cases that can give (correct) patch
presence results with function-level similarity testing, by
varying similarity threshold.

Dataset_ROM_GT, we collect 471 patch-related functions.
For each function, we build both pre-patch and post-patch
versions from AOSP as references. In our experiment setting,
the patch status of a testing target is determined by the
reference which it is more similar to (i.e. if a testing target is
more similar to the pre-patched one than the post-patched
one, it is unpatched; otherwise it is patched). To figure the
similarity degree, we define a threshold. If the distance
between two similarity scores does not exceed the threshold,
we think that they have the same similarity degree, and
function-level similarity testing can not give a patch presence
result in this scenario. By contrast, if the distance between
two similarity scores exceeds the threshold, function-level
similarity testing can give a patch presence result (i.e. the
patch status of the more similar version).

Results. Since the performance of function-level similarity
testing is sensitive to the value of the selected similarity
threshold, we vary the similarity threshold to collect testing
results. More specifically, under different thresholds, we count
the ROM-CVE pairs that function-level similarity testing can
give results, and for these results, we count how many of
them are correct (can give correct results). Figure 5 shows
the results with varied similarity threshold. From this figure,
we find that function-level similarity testing can at most give
results for 82% of ROM-CVE pairs. For the left ROM-CVE
pairs, we find that both pre-patch and post-patch reference
functions have the same similarity score with the testing target.
It shows that function-level similarity testing is too coarse-
grained to reflect fine-grained patch changes. By increasing
the similarity threshold, the ratio of can give results drops
dramatically, because the similarity scores between testing
targets and pre-patched/post-patched reference ones become
more indistinguishable. Meanwhile, it is interesting to find
that the ratio of can give correct results does not increase
significantly with the increased similarity threshold. This
shows that the similarity threshold does not significantly
affect accuracy. The above results indicate that function-level
similarity testing is not suitable for patch presence testing.

USENIX Association 29th USENIX Security Symposium 1157

5 Empirical Study

To understand the patch application practice in the real
world, we apply BSCOUT to perform a large-scale study.
Considering the severe fragmentation issues of the Android
platform [1] and its wide popularity, our study is conducted
on 150 collected Android framework CVEs with 2,506
ROMs collected from 7 vendors (Google, Samsung, Meizu,
Xiaomi, Oppo, Vivo, and Huawei). We mark this dataset as
Dataset_ROM_Large and present it in Table 5. For each ROM,
we also collect several attributes (vendor, model, Android
version, ROM build time, security patch level3) from the
build.prop file in the ROM image. To guarantee the validity
of the study, BSCOUT is configured to leverage the line
information when it is available in the testing targets. Since
the presence of line information for different Java classes
in a single ROM is not the same, we check the presence of
this information in all CVE-related classes for all ROMs in
Dataset_ROM_Large and find the ratio is 99.4%.

Our study mainly focus on three aspects of patch applica-
tion practice: patch application status, the lag of applying
security patches, and the management of security patches.

Table 5: A large-scale Dataset of ROMs Collected from
Smartphone Vendors (Dataset_ROM_Large).

Vendor Phone Models Count Versions Build Time

Google 14 569 4.4.4-8.1.0 2014.06-2019.05
Samsung 24 468 5.0.0-8.1.0 2016.10-2018.09
Meizu 44 481 5.0.1-8.1.0 2015.06-2019.07
Xiaomi 45 464 4.4.4-8.1.0 2016.02-2019.08
Oppo 31 281 4.4.4-8.1.0 2014.11-2019.08
Vivo 46 152 5.0.2-8.1.0 2015.11-2019.05
Huawei 31 91 6.0.0-7.0.0 2016.01-2017.10

5.1 Patch Application Status

Ideally, when the patch for a vulnerability has been released,
all ROMs built after that date should apply this patch. To
measure this practice, we first recognize all the affected
ROMs (marked as Sall) that are built after the patch release
date 4 for each CVE. Thereafter, we use BSCOUT to detect
ROMs (marked as Sunpatched) from Sall that have not patched
the corresponding CVE. To quantify the ratio of patch
application status, we define the unpatched ratio for each
CVE as unpatched_ratio =

|Sunpatched |
|Sall |

. We find that only 9
CVEs are patched by all affected ROMs built after the patch
release date, and 22 CVEs have an unpatched ratio higher
than 50%, which means more than half of affected ROMs
built after the patch release date are still vulnerable.

3Google assigns a security patch level for each public vulnerability which
is actually its release date. Security patch level of a ROM indicates that this
ROM has patched all the vulnerabilities released before this date.

4The patch release date for a CVE is its security patch level.

RQ1: Does the severity of a vulnerability affect its patch
application status? It is common sense that highly severe
vulnerabilities should receive more attention from vendors
and are more likely to be patched by vendors to prevent
potential threats. To verify whether vendors follow this
practice, we correlate the unpatched ratio of each CVE to its
CVSS 5 score [4], which is shown in Figure 6. We surprisingly
find that the severest CVE does not have the lowest unpatched
ratio. Furthermore, we perform a t-test [16] at a significance
level of 0.05 to study the relationship between the unpatched
ratio and the vulnerability severity. It is very interesting to
find that there is no significant difference in the distribution
of unpatched ratio among different CVEs under each CVSS
score (except the CVSS score of 10 which has only 1 CVE)
from that of the whole CVE dataset. We also verify the
results among every individual vendor and confirm these
observations also exist. This implies that developers may not
fully aware of vulnerability severity when applying security
patches, or perhaps vulnerability severity has not yet been
a good indicator for developers to assess the necessity of
applying security patches.

10 9 8 7 6 5 4 3 2
CVSS Score

0

20

40

60

80

100

U
np

at
ch

ed
 R

at
io

(%
)

Figure 6: The unpatched ratio of all affected CVEs under
different CVSS scores (RQ1).

RQ2: Does the complexity of a security patch affect its
application ratio? We use the number of patch-affected lines
of a patch to represent its complexity. In this way, we correlate
the unpatched ratio of each CVE to its patch complexity,
which is depicted in Figure 7. We perform a t-test at a
significance level of 0.05 to study the relationship between
the unpatched ratio and the patch complexity, and the result
shows that patch complexity does not significantly affect its
application ratio.

RQ3: Does code customization affect patch application?
Third-party open-source code is typically customized before
it is used in a software product. To figure out whether code
customization becomes the obstacle to timely patching, we
thoroughly analyze the relationship between the degree of
code customization and the patched ratio. To measure the
degree of code customization, we use function-level code
similarity. To be specific, we leverage the tool introduced

5CVSS is a common way to assess vulnerability severity.

1158 29th USENIX Security Symposium USENIX Association

[0-10) [10,20) [20,30) [30,40) >=40
Patch-affected Lines

0

20

40

60

80

100
U

np
at

ch
ed

 R
at

io
(%

)

Figure 7: The correlation between unpatched ratio of all
affected CVEs with the complexity of their patches (RQ2).

1 (0.9,1)
(0.8,0.9]

(0.7,0.8]
(0.6,0.7]

(0.5,0.6] (0,0.5]

Function Similarity Region

0

10

20

30

40

U
np

at
ch

ed
 R

at
io

(%
)

13.02

21.00

33.25
29.26

21.96

44.06

38.05

Figure 8: The unpatched ratio for all ROM-CVE pairs under
different customization degrees (RQ3).

in §4.3 to calculate the centroid [19] similarity of patch-
related functions between the test target and reference ones in
AOSP. As shown in Figure 8, the unpatched ratio for patch-
related functions with no code customization (there are 50,082
functions whose similarity score is 1 to the reference one) is
significantly lower (13.02% vs 26.92%) than those with code
customization (that is 44,212 functions). We also perform a
one-way analysis of variance [12] to verify the significance
level of the difference between the unpatched ratio of
functions with and without customization, and observed the
p-value is 6.64e-285. Besides, we surprisingly observed that
the degree of code customization does not consistently affect
the patched ratio.
Findings: A large part of CVEs are not patched by every
ROM built after the patches are released. When exploring the
factors that affect the application ratio for a security patch,
it seems vulnerability severity and patch complexity are not
considered by vendors, but code customization is an obvious
obstacle for developers in applying patches.

5.2 The Lag of Applying Security Patches
RQ4: What is the average lag for different vendors to apply a
patch? It is well-known that security patches are not applied
by vendors timely, but it is difficult to estimate the lag between

the patch is released and the patch is applied. Based on a large
number of ROMs, we try to follow these steps to estimate
such lag. First, we count the collected images in our dataset
for each model and select the models with at least 10 images
to study. The reason is that more collected images for a model
help to track patch status more accurately. Second, we check
the patch status for all the images of the selected models and
select those CVEs which have been patched by at least one
image for each model. Finally, we calculate the patch lag for
a CVE on a model as the time span between the patch release
date of the CVE and the build time of the first ROM to patch
this CVE of this model. Table 6 presents the average time for
the selected 99 models to patch its affected CVEs.

Table 6: The average patch lag for different vendors.

Vendor # of Selected
Phone Models

of ROMs
per Model

Average Patch Lag
per Model (day)

Google 12 20 ∼ 77 -65 ∼ -21.47
Samsung 16 10 ∼ 54 38.16 ∼ 412
Xiaomi 33 10 ∼ 31 70.07 ∼ 449.25
Meizu 25 10 ∼ 29 85 ∼ 411
Vivo 2 10 ∼ 12 186.35 ∼ 194.58
Oppo 10 11 ∼ 24 62.71 ∼ 368.89
Huawei 1 10 65.55

Findings: Google proactively patches its own devices even
before announcing the vulnerabilities to the public, while
third-party device manufacturers apply security patches
relatively slowly. Besides, the patch lags for different phone
models from the same vendor vary significantly.

5.3 The Management of Security Patches

Vendors play an important role in applying security patches.
However, it is still unknown what difficulties do vendors
encounter when managing security patches. Therefore, we
explore the following two research questions.

RQ5: Do vendors patch vulnerabilities for one model
but ignore another? Since smartphone vendors usually
manufacture several phone models, it is quite a challenging
task for vendors to manage security patches among multiple
software product lines. Specially, we concern whether vendors
patch a known vulnerability for one model but ignore another.
To study this problem, we design the following experiment.
First, for each CVE and vendor, we select the ROM (marked
as ROM f irst) that is the first to apply the patch in this vendor.
Second, for the same CVE and vendor, we select all models
different from the model of ROM f irst , which has a ROM not
applied the patch. At last, we find all the models (called
Ill-managed Model) that have been forgotten by the vendor
to patch a vulnerability (called Ill-managed CVE) and this
vulnerability has already been applied to some other models
of the same vendor. As presented in Table 7, we find that all
vendors (including Google) have ever patched a vulnerability
on one model but forgot to patch the same vulnerability on

USENIX Association 29th USENIX Security Symposium 1159

another model. To further confirm whether Google has made
mistakes in managing security patches, we manually check
the affected ROM images and find that they indeed forgot to
apply the security patches.

Table 7: Results of how often do vendors patch a vulnerability
at a model while ignore another.

Vendor # of Ill-managed CVEs # of Ill-managed Models

Google 24 12
Samsung 76 25
Meizu 93 43
Xiaomi 75 43
Oppo 63 20
Vivo 41 35
Huawei 33 32

RQ6: Do vendors correctly set security patch level?
According to Android Security Bulletin, the security patch
level of a ROM indicates that the ROM has patched all the
vulnerabilities released before or equal to this level. Thus,
the security patch level set in a ROM is important for end-
users and security experts to assess its security. However, it is
unknown whether vendors correctly set security patch levels.
Based on the way they set security patch levels, we consider 3
kinds of ROMs: 1) Negligent ROM has some vulnerabilities at
a lower patch level unpatched; 2) Diligent ROM has patched
all the vulnerabilities before its declared patch level and does
not patch any vulnerability at a higher patch level; 3) Prudent
ROM not only patches all the vulnerabilities required by its
declared patch level, but also patches some vulnerabilities at
a higher patch level. We label all ROMs in the dataset based
on how vendors set the security patch level for them. We also
exclude 233 ROMs that have not set a security patch level.
The results are presented in Table 8. We surprisingly find
that all vendors (including Google) have negligent ROMs. We
randomly select 30 negligent ROMs from all vendors to verify
the result and find our tool report correct results.

Table 8: Results for ROMs labeled according to how their
vendors set security patch level.

Vendor # of
Negligent ROMs

of
Diligent ROMs

of
Prudent ROMs

Google 112 182 185
Samsung 376 12 66
Meizu 412 6 5
Xiaomi 448 2 8
Oppo 173 19 24
Vivo 139 2 6
Huawei 89 0 2

Findings: Every vendor including Google inevitably makes
mistakes in managing patches among multiple phone models,
and over-claim the security patch level in some of their
devices. These facts indicate that patch presence test tools
such as BSCOUT is necessary to aid the management of
security patches.

5.4 Lessons Learned

Through our study, we find that vulnerabilities inherited from
open-source projects are not actively patched by software
vendors. Specifically, a large fraction of executables remain
unpatched and other executables, although patched, usually
suffer a long patch lag. There may be software maintenance
issues inside each vendor because we find they do not timely
sync security patches to all product lines and usually claim
a higher security patch level than the actual one. However,
we believe a fundamental cause behind these phenomenons is
the lack of transparency of the patch application status or, in
other words, there is no way for end-users, security companies,
administrators, etc. to easily, effectively and quantitatively
measure the patch application status of software. In this
way, reliable, flexible and accurate patch presence tools (such
as BSCOUT) are needed to urge/motivate vendors to apply
security patches.

Since the resources that vendors could invest in applying
security patches are always limited, they are expected to
arrange the order of the patches to be applied in a rational
way. However, we find no obvious clue that vendors do follow
some principles to prioritize the patching process in our
study. For example, the patched ratios for vulnerabilities with
high severity or low patch complexity are not significantly
different from those of others. Meanwhile, we observe that
code customization is indeed an obstacle for vendors to apply
patches, i.e. the unpatched ratio for patch-related functions
with no customization is significantly lower than those with
customization. Besides, even when the patch-related functions
are not customized, the unpatched ratio is still as high as
13.02%. These findings indicate that more techniques are
needed to help vendors apply patches, e.g. metrics to prioritize
patches, back-porting security patches to lower versions and
migrating security patches under code customization.

6 Limitations

BSCOUT simply ignores out-of-method changes when
performing a patch presence test. Therefore, it would fail
in extreme cases when patches only contain out-of-method
changes. This problem could be solved by enhancing
BSCOUT to also extract features from out-of-method changes.
We leave this optimization as our future work.

The current implementation of BSCOUT adopts a primi-
tive version of CRFs model to perform the learning-based
instruction segmentation. Although it achieves satisfying
performance, this part of the work could be further optimized
by systematically evaluating all kinds of models to determine
the best one.

Since BSCOUT does not know which patch lines are more
important than others, it has to consider each patch line as
equal importance. Besides, BSCOUT relies on users to provide
the correct patch for the test target to fix the vulnerability.

1160 29th USENIX Security Symposium USENIX Association

Otherwise, the patch presence result could not correctly reflect
the vulnerability patching status.

7 Related Work

The most related work can be categorized in three directions.
Patch Presence Test. FIBER is designed to perform

a patch presence test for C/C++ binaries. Since FIBER
leverages a small and localized patch snippet for exact
matching, it is hard to tolerate code customization (acknowl-
edged in §6.2 of FIBER [46]). However, we find that code
customization is very common in our Dataset_ROM_GT
and Dataset_ROM_Large. Thus, simply applying FIBER in
these Android ROMs can not achieve satisfying performance
and can not facilitate a large-scale patch application study.
By leveraging the whole patch for patch presence testing,
BSCOUT is more resilient to code customization and achieves
remarkable accuracy.

SnoopSnitch [38] adopts a straightforward approach to
perform patch presence test on native code. In its design, it
enumerates all existing code commits and compilation options
to prepare a large set of reference images and use the patching
status of the most similar one to the testing target as the result.
It is quite similar to version pining tools that are evaluated in
§4.2. Obviously, this mechanism requires huge overhead in
reference set preparation, bears bad scalability in testing, and
is hard to tolerate code customization on the testing target.

Function-level similarity. The function-level similarity is
widely used to search known buggy/vulnerable functions in
a large codebase. Depending on different targets, existing
work could be further divided into two classes: source code-
level and binary-level. Source code-level work requires the
availability of source code and usually leverage different kinds
of source-level features to represent one function, such as
normalized source code [29], code tokens [25, 27, 32] and
parse trees [26]. This line of work differs from ours in that
we do not require the source code of the test target.

Binary-level work seeks more robust features for similarity
analysis. The similarity between control flow graphs is used
by BinDiff [22] and BinSlayer [18] to search similar functions.
Rendezvous [28] improves this technique by considering
instruction mnemonics, control flow sub-graphs, and data
constants. Cross-platform bug search is an appealing feature
that requires to lift binary signatures to platform-independent
representations. multi-MH [40] extracts high-level function
semantics using the I/O behaviors at basic block level, while
discovRE [43] transforms platform-dependent basic blocks
into platform-independent numeric features. To improve
scalability, Genius [23] converts the whole CFGs into high-
level numeric feature vectors and uses graph embedding to
speed up the searching process. Gemini [45] leverages neural
networks to further improve the generation process of graph
embedding. Centroid [19] is frequently used for calculating
the similarity between Java methods. The methods mentioned

above are hard to be applied to patch presence test because
they extract features from the whole function rather than the
patch itself, which are too coarse-grained to accurately catch
the tiny changes introduced by a patch.

Version Pinning. Since patches may be applied in different
versions of a library, the library version reflects patch presence
status. Existing work [17, 21] collects a set of reference
libraries of different versions and use similarity analysis to
pinpoint a test library to the most similar one in the reference
set. Specifically, OSSPolice [21] utilizes syntactic features
(e.g. string constants, normalized class signatures) in a library,
while LibScout [17] constructs class hierarchy profiles that
are more resilient to common obfuscation techniques. Since
coarse-grained features are used, existing work can differ two
library versions where significant changes may occur, while
works poorly to test the presence of security patches which
usually introduce slight changes to the whole binary.

8 Conclusion

This paper presents BSCOUT, a tailored approach to reliably,
flexibly and accurately test patch presence for Java executa-
bles. BSCOUT makes non-trivial efforts by proposing two
key techniques: cross-layer line-level correlative analysis
which utilizes feature-based line-level similarity testing to
link Java source code lines to Java bytecode instructions,
and patch-derived differential analysis which gives a reliable
and precise patch presence result by calculating how many
significant patch-changed lines are indeed included in the
target executable. We evaluate BSCOUT with 194 CVEs
from the Android framework and third-party libraries and the
results show that BSCOUT is both effective and efficient. With
BSCOUT, we perform an empirical study of patch application
practice with 2,506 real-world Android ROMs, which reveals
several interesting findings that have not been verified before
and helps the community to conduct more effective efforts to
fight against vulnerabilities.

Acknowledgements

We would like to thank our shepherd Martina Lindorfer
and anonymous reviewers for their helpful comments. This
work was supported in part by the National Natural Science
Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099, 61602123, 61602121), Natural Sci-
ence Foundation of Shanghai (19ZR1404800), and National
Program on Key Basic Research (NO. 2015CB358800). Min
Yang is the corresponding author, and a faculty of Shanghai
Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science,
and Engineering Research Center of CyberSecurity Auditing
and Monitoring, Ministry of Education, China.

USENIX Association 29th USENIX Security Symposium 1161

References

[1] Android fragmentation: There are now 24,000 devices
from 1,300 brands. https://www.zdnet.com/ar
ticle/android-fragmentation-there-are-now
-24000-devices-from-1300-brands/. Accessed:
2019-08-14.

[2] Android security bulletins. https://source.android
.com/security/bulletin/. Accessed: 2019-08-14.

[3] Command line tools. https://developer.android.
com/studio/command-line. Accessed: 2019-08-14.

[4] Common vulnerability scoring system calculator version
2. https://nvd.nist.gov/vuln-metrics/cvss/
v2-calculator. Accessed: 2019-08-14.

[5] Crf++ source code. https://github.com/taku910
/crfpp. Accessed: 2019-11-08.

[6] Dalvik bytecode. https://source.android.com/d
evices/tech/dalvik/dalvik-bytecode. Accessed:
2019-08-14.

[7] Dexlib - android bytecode library. https://code.goo
gle.com/p/smali/. Accessed: 2019-08-14.

[8] F-droid - free and open source android app repository.
https://f-droid.org/en/. Accessed: 2019-08-14.

[9] The java virtual machine specification. https://docs
.oracle.com/javase/specs/jvms/se7/html/. Ac-
cessed: 2019-08-14.

[10] Libscout source code. https://github.com/reddr
/LibScout. Accessed: 2019-08-14.

[11] National vulnerability database. https://nvd.nist.g
ov. Accessed: 2019-08-14.

[12] One-way analysis of variance. https://en.wikip
edia.org/wiki/One-way_analysis_of_variance.
Accessed: 2019-11-08.

[13] Osspolice source code. https://github.com/osssa
nitizer/osspolice. Accessed: 2019-08-14.

[14] Security patch for cve-2016-3832. https://android.
googlesource.com/platform/frameworks/base/
+/e7cf91a198d\e995c7440b3b64352effd2e309906.
Accessed: 2019-08-14.

[15] Smali/baksmali tool. https://github.com/JesusFr
eke/smali. Accessed: 2019-08-14.

[16] Student’s t-test. https://en.wikipedia.org/wiki/
Student%27s_t-test. Accessed: 2019-11-08.

[17] M. Backes, S. Bugiel, and E. Derr. Reliable Third-
Party Library Detection in Android and its Security
Applications. In CCS’16.

[18] M. Bourquin, A. King, and E. Robbins. Binslayer:
accurate comparison of binary executables. In
PPREW’13.

[19] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on android markets. In ICSE’14.

[20] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu. Finding unknown malice in 10
seconds:mass vetting for new threats at the google-play
scale. In USENIX Security’15.

[21] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee.
Identifying Open-Source License Violation and 1-day
Security Risk at Large Scale. In CCS’17.

[22] T. Dullien and R. Rolles. Graph-based comparison of
executable objects. SSTIC, 5(1):3, 2005.

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin.
Scalable graph-based bug search for firmware images.
In CCS’17.

[24] D. Gao, M. K. Reiter, and D. Song. Binhunt:
Automatically finding semantic differences in binary
programs. In ICICS’08.

[25] J. Jang, A. Agrawal, and D. Brumley. ReDeBug
- Finding Unpatched Code Clones in Entire OS
Distributions. In S&P’12.

[26] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD - Scalable and Accurate Tree-Based
Detection of Code Clones. In ICSE’07.

[27] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder -
A Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. In TSE’02.

[28] W. M. Khoo, A. Mycroft, and R. J. Anderson.
Rendezvous - a search engine for binary code. In
MSR’13.

[29] S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY
- A Scalable Approach for Vulnerable Code Clone
Discovery. In S&P’17.

[30] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. 2001.

[31] F. Li and V. Paxson. A large-scale empirical study of
security patches. In CCS’17.

1162 29th USENIX Security Symposium USENIX Association

https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/
https://developer.android.com/studio/command-line
https://developer.android.com/studio/command-line
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://github.com/taku910/crfpp
https://github.com/taku910/crfpp
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://code.google.com/p/smali/
https://code.google.com/p/smali/
https://f-droid.org/en/
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://github.com/reddr/LibScout
https://github.com/reddr/LibScout
https://nvd.nist.gov
https://nvd.nist.gov
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://github.com/osssanitizer/osspolice
https://github.com/osssanitizer/osspolice
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test

[32] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
Finding copy-paste and related bugs in large-scale
software code. In TSE’06.

[33] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. Vulpecker:
an automated vulnerability detection system based on
code similarity analysis. In ACSAC’16.

[34] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong. VulDeePecker: A Deep Learning-Based
System for Vulnerability Detection. In NDSS’18.

[35] D. MacKenzie, P. Eggert, and R. Stallman. Comparing
and merging files with gnu diff and patch. Network
Theory Ltd, 4, 2002.

[36] E. W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1986.

[37] N. Nguyen and Y. Guo. Comparisons of sequence
labeling algorithms and extensions. In ICML’07.

[38] K. Nohl and J. Lell. Mind the Gap: Uncovering the
Android Patch Gap Through Binary-Only Patch Level
Analysis. In Hitbsecconf’2018.

[39] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera,
and L. Seinturier. Spoon: A Library for Implementing
Analyses and Transformations of Java Source Code.
Software: Practice and Experience, 2015.

[40] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and
T. Holz. Cross-architecture bug search in binary
executables. In S&P’15.

[41] J. Ratcliff and D. Metzener. Ratcliff-obershelp pattern
recognition. Dictionary of Algorithms and Data
Structures, 1998.

[42] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V.
Lopes. SourcererCC - scaling code clone detection to
big-code. In ICSE’16.

[43] E. Sebastian, Y. Khaled, and G. Elmar. discovre:
Efficient cross-architecture identification of bugs in
binary code. In NDSS’16.

[44] P.-N. Tan et al. Introduction to data mining. Pearson
Education India, 2006.

[45] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song.
Neural Network-based Graph Embedding for Cross-
Platform Binary Code Similarity Detection. In CCS’17.

[46] H. Zhang and Z. Qian. Precise and accurate patch
presence test for binaries. In USENIX Security’18.

A CVE Datasets

To evaluate the effectiveness of BSCOUT, we construct two
CVE datasets. The first consists of 150 Android framework
vulnerabilities collected from Android Security Bulletin
spanning from August 2015 to July 2019. Table 9 gives an
overview about these CVEs. The second CVE dataset has 44
vulnerabilities from 23 popular Java libraries, as shown in
Table 10.

Table 9: Overview of Android Framework CVE Dataset.
Android Version # of Affected CVEs

Android 4.* 40
Android 5.* 69
Android 6.* 95
Android 7.* 92
Android 8.* 50
Android 9.* 26

Total 1501

1 Note that a CVE may affect multiple
Android versions.

Table 10: Overview of Third-party Library CVE Dataset.
Library CVE

jsoup CVE-2015-6748
junrar CVE-2018-12418
okhttp CVE-2016-2402
smack CVE-2016-10027
androidsvg CVE-2017-1000498
google-guava CVE-2018-10237
apache-httpclient CVE-2013-4366
apache-jackrabbit-webdav CVE-2016-6801
apache-commons-collections CVE-2015-6420
apache-commons-compress CVE-2018-1324, CVE-2018-11771
apache-commons-fileupload CVE-2016-1000031, CVE-2016-3092

CVE-2014-0050
spring-web CVE-2013-6429
lz4-java CVE-2014-4715
batik-all CVE-2018-8013, CVE-2017-5662

CVE-2015-0250
plexus-utils CVE-2017-1000487
netty-codec-http CVE-2015-2156, CVE-2014-0193
groovy-all CVE-2016-6814, CVE-2015-3253
xalan-java CVE-2014-0107
pdfbox CVE-2016-2175
dom4j CVE-2018-1000632
antisamy CVE-2017-14735, CVE-2016-10006
jackson-databind CVE-2017-7525, CVE-2017-15095

CVE-2017-17485, CVE-2018-7489
bcprov-jdk15on CVE-2018-1000180, CVE-2016-1000352

CVE-2016-1000340, CVE-2016-1000345
CVE-2016-1000346, CVE-2016-1000341
CVE-2016-1000343, CVE-2016-1000342
CVE-2016-1000339, CVE-2015-7940
CVE-2016-1000338,

Patch Characteristics. Different to FIBER [46] which
uses small and localized changes in the patch to generate
binary-level signatures for patch presence test, our work
advocates using the whole patch for testing. Specifically,
we design patch-derived differential analysis to analyze the

USENIX Association 29th USENIX Security Symposium 1163

whole patch and extract features for further test. For the whole
CVE dataset, we analyze their patches and present the results
in Table 11. From this table, we can find BSCOUT utilizes
16.64 features in patch presence test for each CVE on average.
Besides, line addition/deletion/modification are common in
patches, rendering the need to leverage both pre-patch and
post-patch source code for patch presence test. Meanwhile,
we also find each patch has 12.14 out-of-method lines on
average. Since these lines make limited contributions in fixing
a vulnerability, it is necessary to recognize these lines and
exclude them from the scope of patch presence test.

Table 11: Patch Characteristics for the Whole CVE Dataset
(194 CVEs).

Category Maximum Average

of Modified File 10 2.03
of Modified Method 77 3.10
of Extracted Features 117 16.64

of In-method Addition Lines 1443 31.15
of In-method Deletion Lines 138 11.11
of In-method Modification Lines 14 1.24
of Out-method Lines 806 12.14

1164 29th USENIX Security Symposium USENIX Association

	Introduction
	Challenges and Insights
	BScout Approach
	Feature Extractor
	Feature Set
	Feature Parser

	Line-to-line Match Engine
	When line number information is present
	When line number information is absent

	Patch Analyzer
	Patch Presence Checker

	Evaluation
	Results of BScout
	Android Framework Vulnerabilities
	Java Library Vulnerabilities

	Results of Version Pinning
	Results of Function-level Similarity Test

	Empirical Study
	Patch Application Status
	The Lag of Applying Security Patches
	The Management of Security Patches
	Lessons Learned

	Limitations
	Related Work
	Conclusion
	CVE Datasets

