
Open access to the Proceedings of  
the 24th USENIX Security Symposium 

is sponsored by USENIX

UIPicker: User-Input Privacy Identification  
in Mobile Applications

Yuhong Nan, Min Yang, Zhemin Yang, and Shunfan Zhou, Fudan University;  
Guofei Gu, Texas A&M University; Xiaofeng Wang, Indiana University Bloomington

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/nan

This paper is included in the Proceedings of the 
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3



USENIX Association 	 24th USENIX Security Symposium  993

UIPicker: User-Input Privacy Identification in Mobile Applications

Yuhong Nan 1, Min Yang 1, Zhemin Yang 1, Shunfan Zhou 1, Guofei Gu 2, and XiaoFeng Wang 3

1School of Computer Science, Fudan University
1Shanghai Key Laboratory of Data Science, Fudan University

2SUCCESS Lab, Texas A&M University
3Indiana University at Bloomington

{nanyuhong, m yang, yangzhemin, 11300240020}@fudan.edu.cn

guofei@cse.tamu.edu, xw7@indiana.edu

Abstract

Identifying sensitive user inputs is a prerequisite for pri-

vacy protection. When it comes to today’s program anal-

ysis systems, however, only those data that go through

well-defined system APIs can be automatically labelled.

In our research, we show that this conventional approach

is far from adequate, as most sensitive inputs are actu-

ally entered by the user at an app’s runtime: in our re-

search, we inspect 17, 425 top apps from Google Play,

and find that 35.46% of them involve sensitive user in-

puts. Manually marking them involves a lot of effort, im-

peding a large-scale, automated analysis of apps for po-

tential information leaks. To address this important issue,

we present UIPicker, an adaptable framework for auto-

matic identification of sensitive user inputs. UIPicker is

designed to detect the semantic information within the

application layout resources and program code, and fur-

ther analyze it for the locations where security-critical

information may show up. This approach can support a

variety of existing security analysis on mobile apps. We

further develop a runtime protection mechanism on top

of the technique, which helps the user make informed

decisions when her sensitive data is about to leave the

device in an unexpected way. We evaluate our approach

over 200 randomly selected popular apps on Google-

Play. UIPicker is able to accurately label sensitive user

inputs most of the time, with 93.6% precision and 90.1%

recall.

1 Introduction

Protecting the privacy of user data within mobile appli-

cations (apps for short) has always been at the spotlight

of mobile security research. Already a variety of pro-

gram analysis techniques have been developed to evalu-

ate apps for potential information leaks, either dynami-

cally [19, 23, 41] or statically [15, 26]. Access control

mechanisms [27, 22, 33, 17] have also been proposed to

enforce fine-grained security policies on the way that pri-

vate user data can be handled on a mobile system. These

techniques are further employed by mobile app market-

places like Google Play (e.g., Bouncer [7]) to detect the

apps that conduct unauthorized collection of sensitive

user data.

Identifying sensitive user inputs. Critical to those pri-

vacy protection mechanisms is the labeling of sensitive

user data. Some of the data are provided by the operating

system (OS), e.g., the GPS locations that can be acquired

through system calls like getLastKnownLocation().

Protection of such information, which we call System

Centric Privacy data, can leverage relevant data-access

APIs to set the security tags for the data. More compli-

cated here is the content the user enters to a mobile app

through its user interface (UI), such as credit-card infor-

mation, username, password, etc. Safeguarding this type

of information, called User-Input Privacy (UIP) data in

this paper, requires understanding its semantics within

the app, before its locations can be determined, which

cannot be done automatically using existing techniques.

Just like the system-controlled user data (e.g., GPS),

the private content entered through the UI is equally vul-

nerable to a variety of information-leak threats. It has

been reported [5, 10, 4, 6] that adversaries can steal sen-

sitive user inputs through exploiting the weaknesses in-

side existing protection mechanisms. For example, fraud

banking apps to steal user’s financial credentials with

very similarity UIs. Besides, less security-savvy de-

velopers often inadvertently disclose sensitive user data,

for example, transmitting plaintext content across public

networks, which subjects the apps to eavesdropping at-

tacks. Recent work further shows that side channels [18]

and content-pollution vulnerabilities [42] can be lever-

aged to steal sensitive user inputs as well. In our re-

search, we found that among 17,425 top Google-Play

apps, 35.46% require users to enter their confidential in-

formation.

Given its importance, UIP data urgently needs protec-
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tion. However, its technical solution is by no means triv-

ial. Unlike system-managed user data, which can be eas-

ily identified from a few API functions, sensitive user

inputs cannot be found without interpreting the context

and semantics of UIs. A straightforward approach is to

mark all the inputs as sensitive [15], which is clearly an

overkill and will cause a large number of false positives.

Prior approaches [43, 15, 36, 38, 40] typically rely on

users, developers or app analysts to manually specify the

contents within apps that need to be protected. This re-

quires intensive human intervention and does not work

when it comes to a large-scale analysis of apps’ privacy

risks.

To protect sensitive user inputs against both deliberate

and inadvertent exposures, it is important to automati-

cally recognize the private content the user enters into

mobile apps. This is challenging due to the lack of fixed

structures for such content, which cannot be easily re-

covered without analyzing its semantics.

Our work. To address this issue, we propose our re-

search UIPicker, a novel framework for automatic, large-

scale User-Input Privacy identification within Android

apps. Our approach leverages the observation that most

privacy-related UI elements are well-described in lay-

out resource files or annotated by relevant keywords on

UI screens. These UI elements are automatically recov-

ered in our research with a novel combination of several

natural language processing, machine learning and pro-

gram analysis techniques. More specifically, UIPicker

first collects a training corpus of privacy-related con-

tents, according to a set of keywords and auto-labelled

data. Then, it utilizes the content to train a classifier that

identifies sensitive user inputs from an app’s layout re-

sources. It also performs a static analysis on the app’s

code to locate the elements that indeed accept user in-

puts, thus filtering out those that actually do not contain

private user data, even though apparently they are also

associated with certain sensitive keywords, e.g., a dialog

box explaining how a strong password should be con-

structed.

Based on UIPicker, we further develop a runtime pri-

vacy protection mechanism that warns users whenever

sensitive data leave the device. Using the security labels

set by UIPicker, our system can inform users of what

kind of information is about to be sent out insecurely

from the device. This enables the user to decide whether

to stop the transmission. UIPicker can be used by the

OS vendors or users to protect sensitive user data in the

presence of untrusted or vulnerable apps. It can be easily

deployed to support any existing static and dynamic taint

analysis tools as well as access control frameworks for

automatic labeling of private user information.

To the best of our knowledge, UIPicker is the first ap-

proach to help detect UIP data in a large scale. Although

the prototype of UIPicker is implemented for Android,

the idea can be applied to other platforms as well. We im-

plemented UIPicker based on FlowDroid [15] and built

our identification model using 17,425 popular Google

Play apps. Our evaluation of UIPicker over 200 ran-

domly selected popular apps shows that it achieves a high

precision (93.6%) and recall (90.1%).

Contributions. In summary, this paper makes the fol-

lowing contributions.

• We measure the distribution of UIP data based on

17,425 classified top free applications from differ-

ent categories. The results show that in some cate-

gories, more than half of applications contain UIP

data. Further protection of these UIP data is in ur-

gent need.

• We propose UIPicker, a series of techniques for au-

tomatically identifying UIP data in large scale. Lots

of existing tools can benefit from UIPicker for bet-

ter privacy recognition in mobile applications.

• Based on UIPicker, we propose a runtime security

enhancement mechanism for UIP data protection,

which helps user to make informed decisions when

such data prepare to leave the device with insecure

transmission.

• We conduct a series of evaluation to show the effec-

tiveness and precision of UIPicker.

Roadmap. The rest of this paper is organized as follows.

Section 2 gives the motivation, challenges and identifica-

tion scope of UIP data, then introduces some background

knowledge about Android layout resources. Section 3

gives an overview of UIPicker and illustrates the key

techniques applied for identifying UIP data. Section 4

describes the identification approach step by step. Sec-

tion 5 describes the runtime security enhancement frame-

work based on UIPicker’s identification results. Sec-

tion 6 gives some implementation details about UIPicker.

Section 7 gives evaluation and Section 8 discusses the

limitation of UIPicker. Section 9 describes related work,

and Section 10 concludes this work.

2 Problem Statement

In this section, we first provide a motivating example

of users’ sensitive input in two UI screens, then we in-

vestigate challenges in identifying such data and clarify

our identification scope of UIP data. We also give some

background knowledge about Android layout resources

for further usage.

2.1 Motivating Example

Figure 1 shows two UI screens that contain some criti-

cal sensitive information in the Amazon Online Store [1]

2
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Figure 1: Examples of User-Input Privacy (UIP) Data

app. In Figure 1(a), the user is required to input his/her

detailed address for delivering products. Figure 1(b) re-

quires user to input the credit card credential to accom-

plish the payment process. Many apps in mobile plat-

form would require such sensitive data for various func-

tional purposes. Most of such data are personal informa-

tion that users are unwilling to expose insecurely to the

public.

Although UIP data can be highly security-sensitive

and once improperly exposed, could have serious con-

sequences, little has been done so far to identify them at

a large scale. The key issue here is how to automatically

differentiate sensitive user inputs from other inputs. In

our research, we check the top 350 free apps on Google

Play, and find that on average each of them contains 11

fields across 6 UI screens to accept user inputs; however

many of these fields do not accommodate any sensitive

data. Static analysis tools like FlowDroid [15] only pro-

vide options to taint all user inputs as sensitive sources

(e.g. Element.getText()). Analyzing in this way would

get fairly poor results because sensitive user inputs we

focus are mixed in lots of other sources we do not care.

Such problem also exists in runtime protection on users’

sensitive inputs. For example, in order to prevent sensi-

tive user inputs insecurely leaking out, an ideal solution

would be warning users when such data leave the device.

Alerting all user inputs in this way would greatly annoy

the users and reduce the usability because many normal

inputs do not need to be treated as sensitive data.

2.2 Challenges

UIP data can be easily recognized by human. How-

ever, it is quite challenging for the machine to auto-

matically identify such data with existing approaches in

large-scale.

First, UIP data can not be identified through runtime

monitoring. As these sensitive data are highly unstruc-

tured, they can not be simply matched by regex expres-

sions when users input them. Besides, like any normal

inputs, privacy-related inputs are sparsely distributed in

various layouts in a single app, and most UI screens con-

tain such private data require login or complex trigger

conditions, which makes it very difficult for automatic

testing tools like [8, 34] to traverse such UI screens ex-

haustively without manual intervention.

Identifying UIP data by traditional static analysis ap-

proaches is also impractical. In program code’s seman-

tic, sensitive input does not have explicit difference com-

pared to normal input. Specifically, all of such input data

can be accepted by apps, then transmitted out or saved in

local storage in the same way, which makes it difficult to

distinguish them through static analysis approaches.

UIPicker identifies UIP data in apps from another

perspective, it analyzes texts describing sensitive inputs

other than data themselves. This is because texts in UI

screens usually contain semantic information that de-

scribes the sensitive input. Besides, layout description

texts in layout files also contain rich semantic informa-

tion to reveal what the specific element is intended to

be in the UI screen by developers. UIPicker is primar-

ily designed to help identify UIP data in benign apps.

The identification results can be further used for secu-

rity analysis or protection of users’ sensitive data. Note

that in this work we do not deal with malicious apps that

intentionally evade our analysis, e.g., malware that con-

structs its layout dynamically or uses pictures as labels

to guide users to input their sensitive data.

2.3 Identification Scope

UIP data could be any piece of data that users consider

to be sensitive from inputs. In the current version of

UIPicker, we consider the following 3 categories as they

cover most existing UIP data in current apps:

• Account Credentials and User Profiles: Informa-

tion that reveals users’ personal characters when

they login or register, which includes but not limited

to data such as username, user’s true name, pass-

word, email address, phone number, birth date.

• Location: Plain texts that represent address infor-

mation related to users. Different from system de-

rived location (latitude and longitude), what we fo-

cus here is location data from users’ input, e.g., the

delivering address in shopping apps or the billing

address for credit cards.

• Financial: Information related to users’ financial

activities, e.g., credit card number, expire date and

security code.

The objective of UIPicker is to automatically iden-

tify such data from app resources in large-scale. Note

3
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that UIP data might not be limited to items listed here.

UIPicker is capable of expanding its identification scope

easily, as further discussed in Section 4.2.

2.4 Android Layout Background

Here we give some background knowledge about An-

droid layout resources which UIPicker will use in our

identification approach.

Figure 2: Android Layout Description Resources

Layout resources define what will be drawn in the UI

screen(s) of the app. In Android, a User Interface is made

up of some basic elements (e.g., TextView, EditText, But-

ton) to display information or receive input. Android

mainly uses XML to construct app layouts, thus devel-

opers can quickly design UI layouts and screen elements

they wish to contain, with a series of elements such as

buttons, labels, or input fields. Each element has vari-

ous attributes or parameters which are made up of name-

value pairs to provide additional information about the

element.

Android layout resources are distributed in different

folders in the app package. Layout files for describ-

ing UI screens are located in folder res/layout. The

unique hex digit IDs for identifying each element in lay-

out files are in res/value/public.xml and texts showed in

UI screens to users are in res/values/strings.xml. Re-

sources in res/values/ are referenced by texts with spe-

cific syntax (e.g. @String, @id) in the layout files in

res/layout for ease of development and resource manage-

ment.

Figure 2 shows some layout resources used for

constructing the UI in Figure 1(b). The entry is a

layout file named add credit card.xml. It contains two

EditText elements to accept the credit card number and

the card holder’s name, three Dropdown list elements

(named as spinner in Android) to let user select card

type and expiration date. In the EditText for requesting

the card number, it uses @id/opl credit card number

to uniquely identify this element for the app. Syn-

tax like android:inputType=number suggests that

this EditText only accepts digital input. There is

also a TextView before EditText with attribute an-

droid:text=@string/opl new payment credit card number,

which means the content showed in this label will be

string referenced to opl new payment credit card -

number in /res/values/stings.xml.

3 System Overview

In this section, we give an overview of UIPicker and de-

scribe the key techniques applied in our identification

framework.

Overall Architecture. Figure 3 shows the overall archi-

tecture of UIPicker. UIPicker is made up of four com-

ponents to identify layout elements which contain UIP

data step by step. The major components can be divided

into two phases: model-training and identification. In

the model-training phase (Stage 1,2,3), UIPicker takes a

set of apps to train a classifier for identifying elements

contain UIP data from their textual semantics. In the

identification Phase (Stage 1,3,4), UIPicker uses both the

trained classifier (Stage 3) and program behavior (Stage

4) to identify UIP data elements.

Pre-Processing. In the Pre-Processing module, UIPicker

extracts the selected layout resource texts and reorga-

nizes them through natural language processing (NLP)

for further usage. This step includes word splitting, re-

dundant content removal and stemming for texts. Pre-

Process can greatly reduce the format variations of texts

in layout resources caused by developers’ different cod-

ing practice.

Privacy-related Texts Analysis. For identifying UIP

data from layout resources, the first challenge is how to

get privacy-related texts. One can easily come up with a

small set of words about UIP data, but it is very difficult

to get a complete dictionary to cover all such semantics.

In our case, leveraging an English dictionary like Word-

Net [14] for obtaining semantically related words is lim-

ited in the domain of our goals. Many words that are

semantically related in privacy may not be semantically

related in English, and many words that are semantically

related in English may not appear in layout resource texts

as well. For example, both “signup” and “register” repre-

sent to create a new account in an app’s login screen, but

4
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Figure 3: System Overview of UIPicker

they can not be correlated from a dictionary like Word-

Net.

Besides, UIP data in apps are often described with a

single word or very short phrases (e.g. “password” or

“input password”) in layout resources. Due to the lack

of complete sentences describing UIP data, natural lan-

guage processing techniques [35] like dependency rela-

tion pattern extraction is not suitable in our scenario.

UIPicker expands UIP semantic texts with a few

privacy-related seeds based on a specific feature extrac-

tion approach. It first automatically labels a subset of

layouts which could contain UIP data by heuristic rules,

then extracts privacy-related semantics from such layouts

by applying clustering algorithms. It helps us to auto-

matically extract privacy-related texts with little manual

effort. As a result, these inferred texts can be used as

features for identifying whether an element is privacy-

related or not in the next step.

UIP Data Element Identification. Based on the given

set of privacy-related textual semantics from the previ-

ous step, to what extent an element contains privacy-

related texts can be identified as sensitive? As previ-

ous work [37] showed, purely relying on keyword-based

search would result in a large number of false positives.

For example, sensitive item “username” could always be

split into “user” and “name” as two words in apps, and

none of the single word can represent “username”. Be-

sides, certain words like “address” have a confounding

meaning. For instance, such phrase showed in a layout

screen “address such problem” does not refer to location

information.

In this step, UIPicker uses a supervised machine learn-

ing approach to train a classifier based on a set of se-

mantic features generated in the previous stage. Besides,

it fully takes the element’s context in the whole layout

into consideration for deciding whether the element is

privacy-related or not. With this trained model, for any

given layout element with description texts, UIPicker can

tell whether it is related to UIP from its textual semantics.

Behavior Based Result Filtering. Besides identifying

elements that contain UIP data from their textual seman-

tics, we also need to check whether a privacy-related el-

ement is actually accepting user input. In other words,

we need to distinguish user inputs from other static ele-

ments such as buttons or labels for information illustra-

tion in layout screens. Although Android defines Edit-

Text for accepting user input, developers can design any

type of element by themselves (e.g. customized input

field named as com.abc.InputBox). Besides, apps also re-

ceive user inputs in an implicit way through other system

defined elements without typing the keyboard by users.

For example, in Figure 1(b), the expire date of credit card

is acquired by selecting digits from the Spinner element.

We observe that for each privacy-related element iden-

tified by UIPicker in the previous stage, the data should

be acquired by the app with user’s consent if it is actually

accepting user input. For example, the user clicks a but-

ton “OK” to submit data he/she inputs. When reflected in

the program code, the user input data should be acquired

by the system under certain event trigger functions. We

use static code analysis to check whether an arbitrary el-

ement can be matched with such behavior, thus filter out

irrelevant elements we do not expect.

4 IDENTIFICATION APPROACH

In this section, we explain the details of four stages in

UIPicker’s identification approach.

4.1 Stage 1: Pre-Processing

Resource Extraction. We first decode the Android APK

package with apktool [2] for extracting related resource

files we need. Our main interest is in UI-related content,

thus for each app, we extract UI Texts and Layout De-

scriptions from its decompiled layout files.

5
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Layout Resource Sample

UI Texts Add a new credit card, Credit Card Number

Expiration Date, Card Type, Cardholder’s name

@id/opl credit card number

Layout Descrioptions @string/opl new credit card expiration date month

@string/opl new credit card save buton

Table 1: Selected resources of Amazon Online’s “Add

Credit Card” screen

• UI Texts. UI texts are texts showed to users in the

layout screen. In Android, most of such texts are

located in /res/values/strings.xml and referenced by

syntax @String/[UI text identifier] in element’s at-

tribute. Some UI texts are directly written in lay-

out files as attribute values of UI elements, e.g., an-

droid:hint=‘Please input your home address here’.

• Layout Descriptions. Layout Descriptions are

texts only showed in layout files located in

/res/layout/. For these texts, we consider all strings

starting with syntax @id and @String to reflect

what the element is intended to be from their tex-

tual semantics.

The main difference between UI texts and layout de-

scriptions is that UI texts are purely made up of natu-

ral language while layout descriptions are mainly name

identifiers (both formatted and unformatted) with seman-

tic information. As developers have different naming

behaviors when constructing UIs, in most cases, seman-

tic information in layout descriptions is more ambiguous

than that in UI texts.

We extract these groups of resources for further analy-

sis because these selected targets can mostly reflect the

actual content of the app’s layout. For example, the

selected resources about Amazon’s “Add Credit Card”

screen in Figure 1(b) are showed in Table 1.

Word Splitting. Although most of layout descrip-

tions are meaningful identifiers for ease of read-

ing and program development, normally they are

delimiter-separated words or letter-case separated words.

For example, “phone number” can be described as

“phone number” or “PhoneNumber”. Thus we split such

strings into separated word sets. Besides, some of layout

descriptions are concatenated by multiple words without

any separated characters. For these data, we split them

out by iteratively matching the maximum length word in

WordNet [14] until the string cannot be split any more.

For example, string “confirmpasswordfield” will be split

into “confirm”, “password”, and “field”.

Redundant Content Removal. For all UI texts we ex-

tracted, we remove non-English strings through encod-

ing analysis. For each word, we also remove non-text

characters from all extracted resources such as digits,

punctuation. After this, we remove stop words. Stop

Figure 4: After Pre-Processing, texts in left are trans-

formed into formats in right

words are some of the most common words like “the”,

“is”, “have”. We remove such contents because they can

not provide meaningful help in our analysis process.

Stemming. Stemming is the process for reducing in-

flected (or sometimes derived) words to their stem, base

or root form. Stemming is essential to make words such

as “changed”, “changing” all match to the single com-

mon root “change”. Stemming can greatly improve the

results of later identification processes since they reduce

the number of words in our resources. We implement

Porter Stemmer [11] with python NLTK module [9].

Figure 4 shows part of texts before and after pre-

processing for Amazon’s “Add credit card” layout file.

As we can see, all texts concatenated by ‘ ’ are split into

separated words, “edthomephonecontact” is split into

“edt”, “home”, “phone” and “contact” instead. We also

transform words like “forgot”, “forget” into a single uni-

formed format as “forget”.

4.2 Stage 2: Privacy-related Texts Analysis

In this stage, we use Chi-Square test [39] to extract

privacy-related texts from a subset of specific layouts.

The intuition here is that privacy-related words prefer to

be correlated in specific UIs such as the login, registra-

tion or settings page of the app. If some words appear

together in these UI, they are likely to have semantic rel-

evance to users’ sensitive information. Thus, we use such

layouts to extract privacy-related texts in contrast to other

normal layouts.

Chi-Square Based Clustering. Chi-Square (Chi2) test

is a statistical test that is widely used to determine

whether the expected distributions of categorical vari-

ables significantly differ from those observed. Specifi-

cally in our case, it is leveraged to test whether a specific

term on UI screens is privacy-related or not according to

its occurrences in two opposite datasets (privacy-related

or non privacy-related).

Here we choose UI texts rather than layout descrip-

tions to generate privacy-related texts due to the follow-

6
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Figure 5: For each word assigned as the initial seed,

UIPicker calculates its Chi-Square test for each word in

positive samples and appends part of its top results into

the privacy-related texts feature set.

ing two reasons: First, layout descriptions are not well

structured as the naming behaviors vary very differently

between apps (or developers), while UI texts are in a rel-

atively uniformed format, thus making it easy to extract

privacy-related texts from them. For example, a layout

requesting a user’s password must contain term “pass-

word” in the UI screen, while in layout descriptions it

could be text like “pwd”, “passwd”, “pass”. Second, as

layout descriptions aim for describing layout elements,

it may contain too much noisy texts like “button”, “text”

which would bring negative impact to the privacy-related

text extraction.

Figure 5 shows how UIPicker generates privacy-

related texts. First, we give a few words that can ex-

plicitly represent users’ sensitive input we focus (e.g.,

email, location, credit card), and we call them initial

seeds. Each layout sample is made up of a set of UI texts

in its layout screen. Then, the initial seeds will be used

to identify whether a specific layout sample is privacy-

related or not based on the following two patterns:

• Logical relation between sensitive noun phrase (ini-

tial seed) and verb phrase, e.g., the pair (save, pass-

word).

• Logical relation between possessive (mainly word

“your”) and sensitive noun phrase (initial seed),

e.g., the pair (your, username).

As such patterns strongly imply actions that the app

is requesting the user’s sensitive input, for those layout

samples satisfying one of these two patterns, we label

them as privacy-related (positive samples). On the other

hand, for layout samples that do not contain any of texts

in the pattern (both noun phrase and verb, possessive

phase), we label them as negative samples. Note that we

do not label those layouts only containing initial seeds as

positive or negative because a single word is insufficient

for us to identify whether the layout is privacy-related or

not.

Based on the two classified sample sets, for all distinct

words appearing in positive samples, we use Chi-Square

test and rank their results in a descending order. As a re-

sult, texts with higher Chi-Square scores mean they are

more representative as privacy-related, which can easily

be picked up from the top-ranked words in the test re-

sults.

The following example explains our analysis approach

for finding financial-related textual semantics. We set

“credit card” as an initial seed, then the layout shown

in Figure 1(b) will be identified as a positive sample be-

cause both “credit card” and verb phrase “add” are in-

cluded in this layout. Thus in our dataset, other similar

layouts will be labeled as positive if it requires users to

input credit card information as well. As a result, the

positive sample will include more texts such as “expire”,

“date”, “year”, “month”, which are also related to finan-

cial credentials and ranked in top of the Chi-Square test

results.

Noisy Text Removal. Although Chi-Square test aims

to cluster privacy-related texts, it still unavoidably in-

troduces some irrelevant texts into its clustering results.

This is mainly because not all texts in privacy-related lay-

out are necessarily related to privacy. In order to generate

a highly precise cluster of privacy-related texts to elim-

inate false positives in the UIP data element identifica-

tion process, we introduce a little manual effort here for

filtering out such irrelevant texts from the clustering re-

sult. Since Chi-Square test already helps us extract texts

that are most probably related to privacy, looking through

such a list is quite simple and effortless.

Alternative Approaches. In our research, we compared

the Chi-Square test with two popular alternatives, fre-

quency based text extraction and TF-IDF [31], both of

which are found to be less effective. They all bring in

more irrelevant contents than the Chi-Square test, more

susceptible to the limitation of the layout level samples,

that is, privacy related UI screens often contain a lot of

normal texts, which become noises in our sensitive term

identification. Also, using these two approaches, we

need to continuously adjust their thresholds for select-

7
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ing privacy-related text when their sample sizes change.

This can be avoided when using the Chi-Square test.

Nevertheless, we acknowledge that there may exist other

feature extraction mechanisms that could perform better,

which is one of our future work.

4.3 Stage 3: UIP Data Element Identifica-

tion

In this stage, we explain the details of our machine-

learning approach, which automatically identifies UIP

data elements based on their textual semantics. UIPicker

uses supervised learning to train a classifier based on a

subset of element samples with privacy-related seman-

tic features. As a result, for a given unclassified UI ele-

ment, this step could identify whether it is semantically

privacy-related from its description texts.

Feature Selection. We use privacy-related texts inferred

from the previous stage as features for the identification

module. A single word alone usually does not provide

enough information to decide whether a given element is

privacy-related. However, all such features in combina-

tion can be used to train a precise classifier. The main

reason why these features work is that both UI texts and

layout descriptions do in fact reveal textual semantic in-

formation, which a machine learning approach such as

ours can discover and utilize. Note that in layout descrip-

tions, it is often the case that developers use text abbrevi-

ations for simplicity when naming identifiers. For exam-

ple, “address” in layout descriptions could be “addr”. For

this, we construct a mapping list of such texts we visited

during the manual analysis. Thus, for each word in lay-

out descriptions, we transform the abbreviation into com-

plete one if it is contained by any privacy-related texts.

Besides, we also take semantic features of layout

structure into consideration: the texts of this element’s

siblings. We observe that many elements are described

by texts in its siblings. For example, In Figure 1(b),

most of input fields are described by static labels which

contain privacy-related text as instructions for requesting

user inputs. As a result, texts from sibling elements can

bring more semantic information for better identification

results.

The classifier works on a matrix organized by one col-

umn per feature (one word) and one row per instance.

The dimension for each instance is the size of our feature

set (the number of texts from the previous step). The ad-

ditional column indicates whether or not this instance is

a privacy-related element.

Training Data. Since text fields can have different

input types for determining what kind of characters

are allowed inside the field, Android provides the an-

droid:inputType attribute to specify what kind of char-

acters are allowed for EditText. For example, an el-

ement with inputType valued textEmailAddress means

only email address is accepted in this input field. There

are several input types explicitly reflect the element con-

taining UIP data we focus on, which can be used as the

training data of the identification module. We list such

sensitive attribute values1 in the first column of Table 2.

Privacy Category Attribute Value

Account Credentials textEmailAddress textPersonName

& User Profile textPassword textVisiblePassword

password/email/phoneNumber

Location textPostalAddress

Table 2: Sensitive attribute values in layout descriptions

The training data is constructed as follows: First, we

automatically label all elements with sensitive attributes

as positive samples since they are a subset of UIP data

elements. We further manually label a set of elements

involving financial information from the category “Fi-

nancial” because such elements are covered by sensitive

attributes Android provides. Besides, a set of negative

samples are picked out through human labeling after fil-

tering out the elements that contain any of the privacy-

related texts we generated in Stage 2.

Classifier Selection. We utilize the standard support

vector machine (SVM) as our classifier. SVM is widely

used for classification and regression analysis. Given a

set of training examples with two different categories,

the algorithm tries to find a hyper-plane separating the

examples. As a result, it determines which side of hyper-

plane the new test examples belong to. In our case, for an

unclassified unknown layout element with corresponding

features (whether or not containing privacy-related texts

extracted in the previous step) the classifier can decide

whether it contains UIP data or not from its textual se-

mantics.

4.4 Stage 4: Behavior Based Result Filter-

ing

As a non-trivial approach for identifying UIP data, for

each element identified as privacy-related from its layout

descriptions, UIPicker inspects the behaviors reflected in

its program code to check whether it is accepting user in-

puts, thus filtering out irrelevant elements from the iden-

tification results in the previous step.

1In some older apps, developers also use specific attribute like “an-

droid:password=True” to achieve the same goal as inputType. We list

them in Table 2 and call them sensitive attribute values as well for sim-

plicity.
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Figure 6: Sample codes for requesting a user’s credit card

number

User input data is generated based on a user’s inter-

actions with the app during runtime. In other words,

the data will be acquired by the app under the user’s

consent. In Android, to get any data from a UI screen

is achieved by calling specific APIs. Getting such data

under user consent means these APIs are called under

user-triggered system callbacks. For example, code frag-

ments in Figure 6 shows the behavior reflected in the

program when the app gets the user’s credit card num-

ber in Figure 1(b). Here, the input field IB is defined

by IB=findViewById(21...1) in activity addCreditCard.

When the user clicks the “Add your card” button, in

the program code, the OnClick() function in class Ad-

dCardListener() will be triggered by pre-registered sys-

tem callback submitBtn.setOnClickListener(). Then, it

invokes sendText(IB), which sends the inputBox’s object

by parameter, and finally gets the user’s card number by

IB.getText(). One might consider why don’t catch UIP

data simply by checking whether the element is invoked

by getText() API. The reason is that sometimes develop-

ers may also get values from UI screens like static text

labels as well as user inputs, resulting in false negatives

for our identification approach.

5 Runtime Security Enhancement with

UIPicker

The security implications about UIP data are rooted from

the fact that users have to blindly trust apps when they

input sensitive data. With the help of UIPicker differen-

tiating UIP data from other normal inputs, we can use

taint tracking techniques to trace users’ sensitive inputs

and enable users to make informed decisions with a pop-

up window when such data insecurely leave the device,

thus effectively mitigating the potential threats posed by

apps.

For UIP data, we consider the following two situations

as insecure and should inform users to let them decide

whether to proceed or not.

Plain Text Transmission. We consider any piece of

UIP data should not be transmitted in plain text. Such sit-

uation can be easily identified by checking if the tainted

sink is HTTP connection in runtime.

Insecure SSL Transmission. Previous works [34]

showed that a large number of apps implement SSL with

inadequate validations (e.g., app contains code that al-

lows all hostnames or accepts all certificates). Insecure

SSL transmission could be more dangerous because they

may carry over critical sensitive data in most cases. UIP

data should not be transmitted in this way as well.

Since UIPicker is deployed in off-line analysis by cus-

tomized system vendors, one can also check whether the

apps have securely implemented SSL off-line at the same

time. We integrate a static analysis framework named

MalloDroid [20] with UIPicker to automatically check

SSL security risks by evaluating the SSL usage in apps.

As MalloDroid can only find broken SSL usage regard-

less what data is transmitted via this channel, we also use

FlowDroid to check if there exists data/control flow inter-

sections between UIP data sources and SSL library invo-

cation sinks in the app, thus confirming whether the UIP

data in the app will be transmitted with security risks.

6 IMPLEMENTATION

Dataset. We crawled apps from Google Play Store based

on its pre-classified 35 categories in Oct. 2014. For each

category, we downloaded the top 500 apps. Excepting

some connection errors occurred in the crawling process,

totally we collected 17,425 apps as our dataset. This

dataset will be used in both model training and evalua-

tion of UIPicker.

Identification Approach. We implement the prototype

of UIPicker as a mix of Python Scripts and Java code.

The first three steps of UIPicker are developed using

Python with 3,624 lines of code (LOC). The last step,

static analysis for result filtering, is implemented in Java,

which extends FlowDroid[15] and introduces additional

985 LOCs. All experiments are performed on a 32 core

Debian server with Linux 2.6.32 kernel and 64GB mem-

ory.

For privacy-related text analysis, the initial seeds are

assigned as texts in the second column of Table 3 for

each privacy category. For each initial seed, we run the

Chi-Square test using apps in our dataset. Since Android

allows developers to use nested layout structures for flex-

ibility, we also group sub-layout UI texts into their root

layouts. For each round, we collect the top 80 words

from the test results, this threshold is determined by bal-

ancing between the number of privacy-related terms that

can be detected and the amount of noisy text introduced.

After 7 (7 initial seeds) rounds of the Chi-Square test,

9
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we collect 273 words from layout samples (some texts

are overlapped in different round of Chi-Square test). We

then remove 45 words as the noisy text by manual anal-

ysis within less than 3 minutes. As a result, UIPicker

extracts 228 privacy-related terms from 13,392 distinct

words. We list part of them in the third column of Ta-

ble 3 corresponding to the privacy category they belong

to. Such data are used as features for privacy-related ele-

ment identification in the follow-up step.

Privacy Category Initial Seeds Representative Inferred Texts(Stemmed)

Login Credenticals username, password, email mobil phone middl profile cellphon

&User Profile account nicknam firstnam lastnam

person birth login confirm detail regist

Location address, location zip citi street postal locat countri

Financial credit card, bank secur month date pay year bill expir

debit transact mm yy pin code

Table 3: Initial seeds and part of inferred privacy-related

texts from Chi-Square test

The SVM classifier is implemented with scikit-

learn[13] in poly kernel. We optimize the classifier pa-

rameters (gamma=50 and degree=2) for performing the

best results.

For each element identified as privacy-related by the

machine learning classifier, UIPicker conducts static

taint analysis using FlowDroid[15] to check whether it

satisfies specific behavior described in Section 4.4. Since

FlowDroid successfully handles android life cycle (sys-

tem event based callbacks) and UI widgets, the data-

flow results should be both precise and complete. We

set FlowDroid’s layout mode as “ALL” to get each el-

ement’s propagation chain that starts with function find-

ViewById([elementId]) and ends in getText(). As a result,

for any element’s info-flow path which contains system

event function like OnClick(), the element can be identi-

fied as accepting user input.

Runtime Enhancement For each app, we use a

list of elements containing UIP data identified from

UIPicker with their unique IDs as the taint sources

of TaintDroid[19] build in Android 4.1. Since Taint-

Droid allows 32 different taint markings through a 32-bit

bitvector to encode the taint tag, for those UIP data el-

ements involved in insecure SSL usage, we label them

as “SSL Insecure” in the taint source list, thus provide

warnings to users when such data leave the device as

well. We add a pop-up window for showing the leaked

information to users when sensitive data leave the device.

Our modification to TaintDroid is implemented with 730

LOCs in total.

7 Evaluation

In this section, we present our evaluation results. We first

show the performance of UIPicker in Section 7.1, then

we discuss its effectiveness and precision in Section 7.2

and Section 7.3. Then we evaluate our runtime security

enhancement mechanism in Section 7.4.

7.1 Performance

During our experiment, the training phase of the clas-

sifier takes about 2.5 hours on average, the identifica-

tion phase for the whole dataset takes 30.5 hours (6.27

seconds per app). Pre-Processing time for apps is in-

cluded in both of these two phases. The static analy-

sis for behaviour based result filtering is proceeded in 32

threads concurrently. Since UIPicker mainly targets for

customized system vendors or security analysts, we con-

sider such overhead quite acceptable.

7.2 Effectiveness

UIP Data Distribution. We show the general identifi-

cation results of UIPicker in Table 4. In 17,425 apps,

UIPicker finds that 6,179 (35.46%) contain UIP data. We

list our results in a descending order of the identified to-

tal app amounts. As we can see, in 9 out of 35 categories,

more than half of apps contain UIP data.

We make the following observations from this ta-

ble. First, application categories such as BUSINESS,

FINANCE, SHOPPING, COMMUNICATION and SO-

CIAL are more likely to request Account Credentials

and User Profile information, which showed that these

apps are closely related to users’ personal activities.

APP WIDGETS (54.08%) is also ranked among top of

the table. It is a set of apps which have small UIs em-

bedded in the home screen of the device, e.g., Facebook,

Youtube, Twitter. Since most of such apps provide lo-

gin and account-specific functions, they prefer to request

more UIP data as well. The SHOPPING category con-

tains many location-related elements (1,605, 37%) be-

cause the delivering address are always generated from

user inputs. It is also reasonable that both FINANCE

and SHOPPING apps require many financial-related sen-

sitive inputs. We believe such apps containing rich UIP

data should be treated more carefully in both developing

and security vetting process in order to make sure that

sensitive data are well protected in both transmission and

storage.

Comparative Results. We illustrate the effectiveness of

UIPicker from two aspects. First, UIPicker identifies pri-

vacy data that system defined APIs do not touch but still

be sensitive to users. Second, UIPicker achieves far bet-

ter coverage than simply identifying UIP data by specific

sensitive attribute values from the Android design speci-

fication.

Comparison with System Defined Sensitive APIs.

As previously mentioned, specific sensitive resources
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Application Category
Account Credentials & User Profile Location Financial Total

#element %app #element %app #element %app #element %app

BUSINESS 4,314 61.52% 1,112 38.28% 399 18.04% 5,825 62.73%

WEATHER 1,102 46.18% 1,086 59.24% 32 3.01% 2,220 62.45%

FINANCE 4,821 50.90% 1,106 33.47% 1,815 30.46% 7,742 55.31%

COMMUNICATION 2,756 53.83% 439 21.77% 213 14.31% 3,408 55.24%

SHOPPING 3,380 51.80% 1,605 37.00% 609 24.80% 5,594 54.60%

APP WIDGETS 3,161 51.22% 816 31.43% 352 15.71% 4,329 54.08%

NEWS AND MAGAZINES 1,994 47.38% 529 34.68% 133 12.50% 2,656 54.03%

SOCIAL 2,889 52.62% 555 27.42% 146 8.27% 3,590 54.03%

TRAVEL AND LOCAL 2,826 49.00% 1,494 41.16% 452 16.87% 4,772 52.21%

PRODUCTIVITY 1,923 45.45% 394 18.59% 113 9.29% 2,430 48.69%

LIFESTYLE 2,243 43.29% 853 28.66% 341 14.03% 3,437 45.29%

TRANSPORTATION 1,634 39.00% 750 28.60% 273 11.00% 2,657 44.60%

SPORTS GAMES 2,023 41.70% 509 22.67% 151 6.68% 2,683 43.32%

MEDICAL 1,478 40.04% 302 15.49% 169 7.04% 1,949 40.24%

HEALTH AND FITNESS 1,795 39.56% 344 15.06% 165 8.43% 2,304 39.96%

MEDIA AND VIDEO 1,079 37.15% 170 13.05% 72 3.61% 1,321 38.55%

TOOLS 1,110 36.36% 252 16.16% 121 8.08% 1,483 38.38%

MUSIC AND AUDIO 1,053 37.20% 219 11.40% 91 3.20% 1,363 38.00%

PHOTOGRAPHY 1,008 26.65% 205 9.82% 122 5.21% 1,335 28.46%

ENTERTAINMENT 973 27.71% 249 9.24% 215 5.62% 1,437 28.31%

BOOKS AND REFERENCE 924 26.80% 213 9.80% 156 5.60% 1,293 27.40%

EDUCATION 1,753 20.68% 461 9.84% 83 5.02% 2,297 21.69%

COMICS 390 16.60% 84 4.00% 69 3.00% 543 17.20%

PERSONALIZATION 440 16.23% 77 3.85% 32 1.83% 549 16.43%

CARDS 360 14.20% 40 3.20% 58 4.60% 458 15.80%

GAME WIDGETS 302 13.25% 17 2.01% 56 4.42% 375 13.45%

ARCADE 390 12.22% 66 3.61% 24 0.80% 480 12.42%

LIBRARIES AND DEMO 302 10.84% 89 3.61% 136 3.01% 527 11.24%

GAME WALLPAPER 242 11.00% 21 2.00% 55 4.20% 318 11.00%

BRAIN 396 10.60% 102 4.00% 71 2.20% 569 10.80%

GAME 302 9.82% 53 3.81% 16 0.80% 371 10.22%

SPORTS 209 10.22% 26 1.40% 15 0.80% 250 10.22%

CASUAL 267 9.60% 23 2.60% 10 0.40% 300 9.60%

APP WALLPAPER 187 6.25% 34 2.42% 20 1.61% 241 6.65%

RACING 82 4.60% 16 0.40% 20 0.60% 118 4.60%

TOTAL 50,108 30.59% 14,311 16.26% 6,805 7.57% 71,224 35.46%

Table 4: UIP data distribution. #element denotes the number of UIP data elements in each category by different privacy

type. %app denotes the percentage of apps in which these elements appear (500 per category). The last column shows

the total number of UIP data elements and apps that contain UIP data.

Privacy Category Android System Defined APIs

Account Credentials android.tel...TelephonyManager getLine1Number()

& User Profile android.accounts.AccountManager getAccounts()

and...LocationManager getLastKnownLocation()

Location android.location.Location: getLongitude()

android.location.Location: getLatitude()

Table 6: System defined sensitive APIs related to

UIPicker’s identification scope

such as phonenumber, account and location can be regu-

lated by fixed system APIs which we list in Table 6. We

compare the amount of UIPicker’s identification results

with Android system derived sensitive data, which can

help us understand to what extent, system defined sensi-

tive APIs are insufficient to cover users’ privacy.

As Table 5 shows, in our dataset, 4,900 apps use sys-

tem defined APIs for requesting Account Credentials

and Profile Information while UIPicker identifies 5,330

(30.59%) apps containing UIP. UIPicker identifies 2,883

(16.26%) apps in the whole dataset that request location

privacy data from user inputs. Besides, 1,318 (7.57%)

apps request financial privacy data from users, and none

of system defined APIs can regulate such data. In gen-

eral, UIPicker identifies 6,179 (35.46%) apps contain-

ing at least one category of UIP data, which have been

largely neglected by previous work in privacy security

analysis and protection.

As Column 4 in Table 5 shows, there is some overlap

between system defined APIs and UIP data (1,340 for

Account Credentials & User Profile, 2,282 for Location

respectively). For each app, we check whether it contains

both the system defined APIs and the UIP data in the

same privacy category, e.g., invoking the getLastKnown-

Location() API and requesting address information from

the user input of the same app. In some cases, the same

piece data may come from either UI input or API call.

For example, using a phone number as the login account

of the app. However in most cases, the overlapped data

in the same privacy category may come from different

sources without overlapping in code paths. For example,

the invocation of get-location APIs is used for realtime

geographic locating, while some location input could be

11
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Privacy Category
System Defined APIs (#Apps) Elements with Sensitive Attribute Values (#Elements)

API UIPicker Overlap InputType UIPicker Incremental

Account Credentials 4,900 5,330 1,340 24,021 46,227 26,087

& User Profile

Location 15,221 2,883 2,282 941 14,311 13,370

Financial - 1,318 - - 6,353 -

Total 15,632 6,179 - 24,962 71,224 46,262

Table 5: We compare UIPicker’s identification results with apps containing system defined sensitive APIs (column

2-4) and elements containing sensitive attribute values (column 5-7).

a shopping address for delivering goods. Since precisely

analyzing which input element may overlap with system

defined APIs requires additional information-flow anal-

ysis, which is beyond this paper’s scope, we leave it as

future work for measuring the relationship between these

two types of sensitive data.

Comparing to sensitive attribute values. In Sec-

tion 4.3, we use elements containing sensitive attribute

values as part of training data for our identification mod-

ule. However, they can only cover a portion of UIP data

because they are not intended for this purpose. Here

we compare the amount of UIPicker’s identification re-

sults with elements containing sensitive attribute values

to show the effectiveness of UIPicker.

As Table 5 shows, in general, UIPicker identifies

46,262 more UIP data elements than simply identifying

them by sensitive attribute values (e.g. textPassword).

Especially for the Location category, UIPicker identifies

14,311 elements, which is nearly 15 times more than

simply identifying them based on attribute “textPostal-

Address”.

Types of UIP Elements. We list the identification results

of UIP data elements other than EditText in Table 7. In

general, UIPicker finds 18,403 (25.84%) elements other

than EditText to accept users’ sensitive inputs. It is inter-

esting to note that UIPicker also finds a large portion of

TextView as UIP data elements. In most cases, although

data in TextViews are not editable, they could be gener-

ated by users from other layouts and dynamically filled

in TextView later. For example, the data from previous

steps of a registration form, or fetched from the server

after users’ login. There are 5,075 (7.13%) customized

input elements and 1,962 (2.75%) dropdown lists (Spin-

ners) containing UIP data. Type “Others” in table con-

tains elements such as RadioButton, CheckBox.

7.3 Precision

For evaluating the precision of UIPicker, we perform

the evaluation of classifier based on the machine-leaning

dataset mentioned in Section 4. We also conduct a man-

ual validation for two reasons. First, since the training

Type # Elements % in UIP Data

TextView 10,582 14.86%

Customized 5,075 7.13%

Spinner 1,962 2.75%

Others 784 1.10%

Total 18,403 25.84%

Table 7: Types of UIP Elements Other than EditText

data of classifier is not absolutely randomly selected (part

of them are labeled by sensitive attributes automatically),

a manual validation is required to confirm that the iden-

tification results of the classifier carries over the entire

dataset. Second, the classifier is only capable of distin-

guishing UIP data elements from their textual semantics,

the manual validation can be used to check whether static

text labels are effectively excluded by UIPicker after be-

haviour based result filtering.

Evaluation of Classifier. The training set contains

53,094 elements in total, which includes 24,962 labeled

by sensitive attribute values and financial-related ele-

ments, with 25,331 negative samples labeled by manual

efforts.

We use ten-fold cross validation which is the standard

approach for evaluating machine-learning classifiers. We

randomly partition the entire set of sample elements into

10 subsets, and we train the classifier on nine of them and

then test the remaining 1 subset. The process is repeated

on each subset for 10 times. In the end, the average pre-

cision and recall is 92.5% and 85.43% respectively.

As shown in Table 8, we also compare the average

precision and recall with other two classifiers, i.e., One-

Class Support Vector Machine learning (OC-SVM) [32]

and Naive Bayes [30]. The results show that the stan-

dard SVM performs the best. We tried OC-SVM with

only positive samples (elements containing sensitive at-

tributes) to train the classifier. OC-SVM generated more

false negatives than the standard SVM due to the lack

of negative samples. Naive Bayes, a traditional proba-

bilistic learning algorithm, also produced very imprecise

results. This happens especially when it deals with ele-
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ments that contain low-frequency privacy-related texts.

Classifier Avg.Precision Avg.Recall

SVM 92.50% 85.43%

OC-SVM 93.74% 68.48%

Naive Bayes 95.42% 26.70%

Table 8: Classifier Comparison

Manual Validation. We envision UIPicker to be used as

an automated approach for labeling elements that con-

tain UIP data. UIPicker achieves this by using some eas-

ily available UIP data (elements containing sensitive at-

tributes or hand-annotated) and then using the classifier

to automatically explore larger parts of UIP data. Mea-

suring precision is hard in this setting as there is no entire

pre-annotated elements (labeling sensitive or insensitive

for all of them) for a set of apps that could compare with

UIPicker’s identification results.

As a best-effort solution, we randomly select 200 apps

from top 10 categories (20 in each) ordered by %apps

which UIP data appear most in Table 4 as the man-

ual validation dataset. As such categories may contain

much more UIP data than others, it provides the oppor-

tunity that our experts can walk through less apps (and

activities) to validate more UIP elements. The selected

apps are excluded from the classifier’s training process

to avoid overlap. Such way can greatly improve the ef-

fectiveness of the manual validation. Since the subset of

apps is randomly picked, we believe that the evaluation

results can provide a reasonable accuracy estimation on

the entire dataset. For each element that UIPicker iden-

tifies as UIP data, we check their corresponding descrip-

tions in XML layout files with some automated python

scripts for efficiency (quickly locating the element in lay-

out files and trying to understand it from descriptions).

If this is still insufficient for us to identify whether it is a

UIP data element, we confirm them by launching the app

and find the element in the layout screen. The manual

validation over 200 apps shows that UIPicker identifies

975 UIP data elements with 67 false positives and 107

false negatives.

False Positives: The false positive rate is 6.4%

(67/1042 elements UIPicker identifies). In most cases,

this is caused by the element’s neighbors. That is, the

element’s neighbors contain privacy-related texts while

the element itself is not privacy-related. Consider the

following example, an EditText with only one description

“message” while its previous element requires the user to

input username with many sensitive textual phrases. As

UIPicker takes neighbor elements’ texts into considera-

tion for better identification results, the privacy-related

texts in its neighbor make UIPicker falsely identify the

current element as UIP data. We consider such false

alarm as acceptable because once such false alarm hap-

pens, their neighbor elements (the actual UIP data ele-

ments) are very possible to be identified by UIPicker as

well.

False Negatives: We manually inspect each app in the

evaluation dataset by traversing their UI screens as much

as possible to see whether there exists UIP data elements

that missed by UIPicker. In 200 apps, we find 107 ele-

ments not identified by UIPicker as privacy-related, and

we conclude the reasons as follows: (1) Some very low-

frequency texts representing UIP were not inferred from

UIPicker by the privacy-related text analysis module.

For example, “CVV” represents the credit card’s security

code, however we find this only happened in 4 Chinese

apps. The low occurrence frequency of texts like “CVV”

in our croups makes UIPicker fail to add them as fea-

tures for the identification process. (2) In static analysis

for behavior-based element filtering, due to FlowDroid’s

limitations, the call trace of some element was broken

in inter-procedural analysis which makes UIPicker miss

such elements in the final output.

Based on the total number of TPs, FPs and FNs

(975, 67, 107), we compute the precision and recall of

UIPicker as follows:

Precision =
TP

TP+FP
Recall =

T P

TP+FN

Overall, UIPicker precisely identified most of UIP

data, with 93.6% precision and 90.1% recall.

7.4 Runtime Enhancement Evaluation

System Overhead. We compare the performance over-

head with TaintDroid using Antutu Benchmark [3]. We

run Antutu 10 times in both systems under a Nexus Prime

device, and the average scores are basically the same.

This is reasonable because our mechanism only provides

additional UIP data sources. We conclude that the secu-

rity enhancement mechanism does not introduce notice-

able additional performance overhead to TaintDroid.

Case Study. We find that some critical UIP data are

under threats in Android apps. In Figure 7, a popu-

lar travel app “Qunar”, which has 37 million downloads

in China [12], sends users’ credit card information with

vulnerable SSL implementation during the payment pro-

cess. The insecure transmission is reported to the user

with a pop-up window when such data leave the device,

thus the user can decide whether to proceed or use an

alternative payment method to avoid the security risk.

13
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Figure 7: Insecure Transmission of UIP data. We use

faked sensitive data in the experiment.

8 Discussion

In this section, we discuss the general applicability of

UIPicker, as well as limitations and future work.

UIPicker is able to efficiently handle UIP data which

previous work does not concentrate on, nor be able to

cover. Compared with existing approaches that focus on

System-Centric Privacy data, UIPicker rethinks privacy

from a new perspective: sensitive data generated from

user inputs, which is largely neglected for a long period.

UIPicker provides an opportunity for users to make in-

formed decisions in a timely manner when sensitive data

leave the device insecurely, instead of letting users as-

sume the app can be trusted.

UIPicker uses not only texts in UI screens but also

texts in layout descriptions for UIP data identification.

This framework is generic to all kinds of apps without lo-

cality limitation. The way UIPicker correlates UIP data

from layout descriptions could also be leveraged by ex-

isting work [37, 28] that attempts to map the permission

usage with app descriptions.

UIPicker has the following limitations. (1) UIPicker

does not consider dynamically generated UI elements,

although we have not found any UIP data element be-

ing generated at runtime in our experiments. Dynamic

UI elements could be analyzed through more sophis-

ticated static/dynamic analysis with the app’s program

code, which is our future work. (2) Currently, UIPicker

can not handle sensitive user inputs in Webview because

they are not included in app layout resources. In the fu-

ture, we plan to download such webpages by extracting

their URLs from the app, then analyze their text contents

as well.

9 RELATED WORK

Privacy source identification. Existing work [16, 29]

focuses on mapping Android system permissions with

API calls. PScout [16] proposes a version-independent

analysis tool for complete permission-to-API mapping

through static analysis. SUSI [29] uses a machine learn-

ing approach to classify and categorize more Android

sources and sinks which are missed by previous info-

flow taint tracking systems. The most similar work with

UIPicker is SUPOR [25], which also aims to automat-

ically identify sensitive user inputs using UI rendering,

geometrical layout analysis and NLP techniques. SU-

PER mainly focuses on specific type of UI elements

(EditText) while UIPicker is not limited to this.

Text analysis in Android app. Several studies utilize

UI text analysis for different security proposes. As-

Droid [24] detects stealthy behaviors in Android app by

UI textual semantics and program behavior contradic-

tion. However, it only uses a few keywords to cover

sensitive operations such as “send sms”, “call phone”.

CHABADA [21] checks application behaviors against

application descriptions. It groups apps that are sim-

ilar with each other according to their text descrip-

tions. The machine learning classifier OC-SVM is used

in CHABADA to identify apps whose used APIs dif-

fer from the common use of the APIs within the same

group. Whyper [37] uses natural language processing

(NLP) techniques to identify sentences that describe the

need for a given permission in the app description. It

uses Stanford Parser to extract short phrases and de-

pendency relation characters from app descriptions and

API documents related to permissions. AutoCog [28]

improves Whyper’s precision and coverage through a

learning-based algorithm to relate descriptions with per-

missions. UIPicker could potentially leverage their tech-

niques to generate more complete privacy-related texts

for UIP data identification.

Static analysis. There are lots of work [24, 26, 15, 20,

34] on using static analysis to detect privacy leakage,

malware or vulnerabilities in Android apps. AsDroid

takes control flow graphs and call graphs to search in-

tent from API call sites to top level functions (Activi-

ties). UIPicker’s behavior-based result filtering is sim-

ilar to AsDroid while they have different goals. SMV-

HUNTER [34] uses static analysis to detect possible

MITM vulnerabilities in large scale. The static analy-

sis extracts input information from layout files and iden-

tifies vulnerable entry points from the application pro-

gram code, which can be used to guide dynamic testing

for triggering the vulnerable code.

14



USENIX Association 	 24th USENIX Security Symposium  1007

10 CONCLUSION

In this paper, we propose UIPicker, a novel framework

for identifying UIP data in large scale based on a novel

combination of natural language processing, machine

learning and program analysis techniques. UIPicker

takes layout resources and program code to train a pre-

cise model for UIP data identification, which overcomes

existing challenges with both good precision and cover-

age. With the sensitive elements identified by UIPicker,

we also propose a runtime security enhancement mech-

anism to monitoring their sensitive inputs and provide

warnings when such data insecurely leave the device.

Our evaluation shows that UIPicker achieves 93.6% pre-

cision and 90.1% recall with manual validation on 200

popular apps. Our measurement in 17,425 top free apps

shows that UIP data are largely distributed in market

apps and our run-time monitoring mechanism based on

UIPicker can effectively help user to protect such data.
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