
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

An Ever-evolving Game: Evaluation of Real-world
Attacks and Defenses in Ethereum Ecosystem
Shunfan Zhou, Zhemin Yang, and Jie Xiang, Fudan University; Yinzhi Cao,

Johns Hopkins University; Min Yang and Yuan Zhang, Fudan University

https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan

An Ever-evolving Game: Evaluation of Real-world
Attacks and Defenses in Ethereum Ecosystem

Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao†, Min Yang, and Yuan Zhang
Fudan University, † Johns Hopkins University

{sfzhou17, yangzhemin, jxiang17, m_yang, yuanxzhang}@fudan.edu.cn, † yinzhi.cao@jhu.edu

Abstract
Smart contract security has drawn much attention due to

many severe incidents with huge ether and token losses. As a
consequence, researchers have proposed to detect smart con-
tract vulnerabilities via code analysis. However, code analysis
only shows what contracts can be attacked, but not what have
been attacked, and more importantly, what attacks have been
prevented in the real world.

In this paper, we present the first comprehensive measure-
ment study to analyze real-world attacks and defenses adopted
in the wild based on the transaction logs produced by unin-
strumented Ethereum Virtual Machine (EVM). Specifically,
our study decouples two important factors of an adversarial
transaction—i.e., (i) an adversarial action exploiting the vul-
nerable contract and (ii) an adversarial consequence like ether
or token transfers resulted from the action—for the analysis
of attacks and defenses.

The results of our study reveal a huge volume of attacks
beyond what have been studied in the literature, e.g., those
targeting new vulnerability types like airdrop hunting and
those targeting zero-day variants of known vulnerabilities.
Besides successful attacks, our study also shows attempted
attacks that are prevented due to the deployments of defenses.
As the nature of cyber-security, those defenses have also been
evaded, mainly due to incomplete defense deployments. To
summarize it, we believe that this is an ever-evolving game
between adversaries obtaining illegal profits and defenders
shielding their own contracts.

1 Introduction
Smart contract security has drawn much attention as the emer-
gence of several famous, multi-million-dollar incidents, such
as TheDAO attack [42] and the Parity Wallet Hack [34],
which steal thousands of ethers and tokens from the Ethereum
ecosystem. One lesson that we have learned from those inci-
dents is that smart contracts, just like normal computer pro-
grams, have vulnerabilities—such as integer overflow, reen-
trancy [4], and call injection (or called code injection [30])—
and even honeypot [37, 38].

In the past, researchers propose using code analysis [5, 9,
23, 27–33, 35, 36, 39–41, 43], e.g., static and dynamic, to de-
tect those vulnerable contracts and honeypots. On one hand,
many static analysis tools adopt either source- or bytecode-
level analysis to find vulnerabilities based on certain code
patterns. However, those static analysis tools can only deter-
mine whether a contract is vulnerable but not whether or how
it is exploited in the real world. For example, a recent report
from Perez and Livshits [35] has already shown that only a
small number, i.e., around 2%, of vulnerabilities found by six
recent prior works [27, 29–31, 33, 41] are actually exploited.

On the other hand, some dynamic analysis tools [35, 36]
are proposed to detect and understand, to some extent, what
attacks have been adopted in the real world. For exam-
ple, Sereum [36], a dynamic analysis tool of reentrancy at-
tacks, analyzes the first 4.5 million transactions on Ethereum
blockchain and finds several unknown reentrancy attack pat-
terns and vulnerable contracts. The aforementioned report
from Perez and Livshits also modified Ethereum Virtual Ma-
chine (EVM) to perform dynamic analysis and understand
whether a reported contract has been exploited. However, dy-
namic analysis tools, especially those which propagate taints,
are usually heavyweight and not scalable to a large-scale mea-
surement.

The research task that we are tackling in the paper is to ana-
lyze all the existing transactions on the Ethereum blockchain
and understand what strategies adversaries have adopted in
real-world and how prevalent and successful those strategies
are. This task is beyond what prior code analysis, either static
or dynamic, can handle: We aim to analyze both prior attacks—
no matter succeeded or failed—and defenses using public
information that has already been outputted by EVM during
the execution of transactions.

Particularly, in this paper, we perform the first compre-
hensive study of 420 million Ethereum transactions from
August 2015 to March 2019 and measure real-world adop-
tions of attacks and defenses. Our methodology, at its core, is
a transaction log analysis that matches execution traces out-
putted by uninstrumented EVM against so-called adversarial

USENIX Association 29th USENIX Security Symposium 2793

transaction signatures and looks for adversarial transactions,
either confirmed (i.e., successful) or attempted (i.e., failed).
Our signature matching involves two steps, which decouples
two important concepts in adversarial transactions, i.e., (i) an
adversarial action and (ii) an adversarial consequence. The
former, like a function call with certain parameters, shows the
intent of the transaction to exploit a contract, and the latter,
such as an ether transfer, shows the result of the former in
exploiting the contract.

Here are the two steps in details. First, we design a so-called
action clause of the adversarial signature to match contract
interactions in the transaction log and to decide whether a
transaction has an adversarial intent in exploiting a vulner-
ability. Particularly, we construct a special structure, called
action tree, for each transaction or contract, which represents
all the inter-contract interactions, such as function calls, con-
tract creation and contract destruction. Then, we match the
action clause against those action trees to find adversarial
transactions.

Second, we design another clause of the signature, called
result clause, to match ether, token, or ownership transfers
between contracts in the log and confirm the consequences of
adversarial transactions. Particularly, we build another data
structure, called result graph, to represent all such transfers
between contracts for each transaction or contract. Then, we
match the result clause against the constructed result graphs to
confirm the consequences, thus finding confirmed adversarial
transactions.

One major outcome of our study is to reveal what attack
strategies have been adopted in practice and what conse-
quences of these attacks are. We have observed a clear gap
between what prior works have found and what attackers
adopt in the real world. Particularly, 93.55% of confirmed
adversarial transactions are targeting 198 vulnerable contracts
using a new attack tactic, i.e., airdrop hunting. We have also
observed a big shift of attack strategies over time. In the early
days of Ethereum, i.e., from August 2015 to August 2017,
reentrancy and call injection dominates all the adversarial
transactions, taking up 97.00% of all the confirmed. Then, the
attack focus gradually shifts to integer overflow and airdrop
hunting: From September 2017 to March 2019, 76.05% of
attempted and 98.12% of confirmed adversarial transactions
are caused by these two attack categories.

Another outcome of our study is to reveal real-world, de-
ployed defenses. Particularly, we analyzed those attempted
but not confirmed adversarial transactions and then their target
contracts to find adopted defense strategies. In total, we find
six classes of defenses adopted by 5.8 million open-source
contracts. There are two major widely-deployed defenses:
Sa f eMath adopted by 3.1 million contracts for arithmetic
operations and the onlyOwner check by 2.1 million. These
deployed defenses are indeed effective in defending against
1,276 attempted adversarial transactions: The Sa f eMath is
the most effective one that prevents 1,161 adversarial transac-

tions.
Some of those defenses, although deployed, are also being

evaded mostly due to incorrect or inappropriate deployments.
In total, we have observed 68,873 adversarial transactions that
have successfully evaded defenses deployed by existing con-
tracts. For example, one Ethereum Request for Comment 20
(ERC20) token contract suffers a successful integer overflow
attack because it uses Sa f eMath functions in all the ERC20
interfaces but not a customized token transfer function. We
believe that the attack and defense in the Ethereum ecosystem
will be an ever-evolving game between two parties.

Apart from existing attacks and defenses, one byproduct
of our study is the detection of zero-day vulnerable contracts.
Particularly, once we identified a transaction as confirmed ad-
versarial, the target contract is obviously vulnerable. Further,
if the contract is firstly considered by our study as vulnerable,
we can treat the vulnerability as zero-day. The main reason for
the discovery of zero-day vulnerabilities is the imprecision of
existing code analysis, while a log analysis used in our study
is in parallel to prior code analysis. For example, some prior
works cannot perform cross-contract analysis [5, 41]; some
have coverage issues that skip sensitive multi-target token
transfer functionality [29]; some only perform dataflow analy-
sis on basic data type but not complex ones like objects [5, 9].

We find 22 zero-day vulnerabilities, e.g., integer overflow
and reentrancy, and 51 zero-day honeypots with real-world
adversarial transactions. Those zero-day vulnerabilities are
indeed exploited in the real world and somewhat popular. Take
integer overflow for example. 39.93% of all the confirmed
adversarial transactions targeting integer overflows belong to
16 previously-unknown vulnerabilities found by our study.

Lastly, in the spirit of open science, we have
made our measurement study results available in
this URL (https://drive.google.com/open?id=
1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi). We have also
reported all the zero-day vulnerabilities to their developers—
if the contracts are open-source and developers are
available—and also CVE database.

2 Overview
In this section, we start from a running example to explain our
methodology and then describe our threat model, i.e., in-scope
and out-of-scope attacks.

2.1 A Running Example

In this subsection, we illustrate a concrete attack example—
namely airdrop hunting—to describe our methodology in
detecting and modeling real-world attacks and defenses. Par-
ticularly, airdrop is a crypto-token feature that distributes new
participants a fixed, small amount of tokens as a way of gain-
ing attention and attracting followers. Airdrop hunting is a
relatively-new attack strategy that exploits the weaknesses of
airdrop and bypasses the identity check of new participants
to obtain a large number of free tokens.

2794 29th USENIX Security Symposium USENIX Association

https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi
https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi

1 contract Simoleon is ERC20Interface {
2 function transfer(address _to, uint256

_amount) returns (bool success) {
3 initialize(msg.sender);
4 ...
5 }
6 function initialize(address _address)

internal returns (bool success) {
7 if (!initialized[_address]) {
8 initialized[_address] = true;
9 balance[_address]=_airdropAmount;

10 }
11 }
12 }

Figure 1: A vulnerable airdrop contract example.

Figure 1 shows a vulnerable, real-world, ERC20 token con-
tract, called Simoleon—the contract only checks the identity
of a participant based on its msg.sender (Line 3) and then
distributes airdrops if the msg.sender is new and never seen
before. However, a new msg.sender may belong to a con-
tract generated automatically by an adversary hunting for
airdrops. Specifically, we show the execution traces of an
airdrop hunting transaction in Table 1, in which the master
contract controlled by the adversary creates 50 slaves to hunt
airdrops via calling the transfer function. All the slaves
transfer the airdrops to the master contract and then destroy
themselves to avoid being directly tracked.

Now, we use this running example to explain our mea-
surement study. From a high-level, our study has three sub-
analysis: (i) attack analysis, i.e., finding adversarial transac-
tions, (ii) defense analysis, i.e., finding contracts and corre-
sponding defenses with attempted adversarial transactions,
and (iii) evasion analysis, i.e., finding adversarial transactions
evading existing defenses. We describe those three respec-
tively using the example.

First, the attack analysis finds adversarial transactions like
those with execution traces as shown in Table 1. These ad-
versarial transaction traces have two patterns, an adversarial
action that exploits the vulnerable contract and an adversarial
consequence showing that the adversary illegitimately obtains
tokens. Specifically, the action here, for an airdrop hunting
attack, is that the master contract creates many slave contracts,
which then call a token transfer function in the victim con-
tract. Subsequently, the consequence here is that slaves collect
airdrop bonus and then transfer them back to the master.

Second, the defense analysis starts from attempted adversar-
ial transactions like those that are similar to traces in Table 1
but failed, and then finds corresponding defenses that lead
to the failure of adversarial transactions. That is, although
these transactions have adversarial actions, but do not have
any adversarial consequence: tokens are not obtained by the
slaves and then the master.

Here is one example defense, i.e., an isHuman modifier in
Figure 2, against airdrop hunting. This modifier—found in a
famous gambling contract Fomo3D [8] and used by 36 airdrop
token contracts—checks the code length of a participant and
decides whether it is a contract created by another contract

1 modifier isHuman() {
2 address _addr = msg.sender;
3 uint256 _codeLength;
4
5 assembly {_codeLength := extcodesize(_addr

)}
6 require(_codeLength == 0, "humans only");
7 _;
8 }
9 modifier anotherIsHuman() {

10 require(tx.origin == msg.sender , "humans
only");

11 _;
12 }

Figure 2: An airdrop hunting defense example.

or a human. Therefore, if an adversary generates many slave
contracts automatically, the code length of each slave will be
larger than zero, thus being blocked.

Lastly, the evasion analysis finds confirmed adversarial
transactions that bypass defenses found in the previous anal-
ysis. The aforementioned isHuman modifier can be evaded
with confirmed adversarial transactions because an adver-
sary can embed the airdrop hunting code in the construc-
tor function, in which the code length is zero when the vic-
tim contract measures the yet-to-be-constructed slaves. Of
course, the defenders also fight back with another modifier,
i.e., the anotherIsHuman in Figure 2. This defense checks
the transaction initiator (tx.origin) and the airdrop partici-
pant (msg.sender) to ensure that the participant is not a slave
invoked by a master.

2.2 Threat Model

Intuitively, in this study, we measure existing attacks with
explicit, gaugeable losses in terms of ethers and tokens. For
example, if an adversary’s contract exploits a vulnerability
of a victim contract and then gains say 100 ethers from the
victim, we would consider this attack as in-scope. For another
example, if an adversary makes a victim contract unavailable
to others, e.g., via an out-of-gas attack [27] or lock of ether as
in the famous Parity Wallet Freeze1 [6], the adversary does not
directly obtain any ethers or tokens and therefore we consider
it as out-of-scope. We adopt this threat model because the
attacks with explicit losses can be quantified and measured.

Formally, our threat model includes contract-level attacks
that lead to an explicit ether or token flow or an ownership
transfer from one contract, e.g., a victim, to another, e.g., the
adversary. For example, a reentrancy attack will lead to a
repeated transfer of ethers or tokens from the victim to the
adversary, thus considered as in-scope. By contrast, the afore-
mentioned denial-of-service and blockchain-level attacks like
the replay attack [19] are out-of-scope.

In-scope Attacks Now, for the convenience of readers, we
show a list of all the in-scope attacks considered in the paper

1Note that “Parity Wallet Freeze”, due to a glitch in the multi-sig library,
is different from another famous “Parity Wallet Hack” [34] caused by a call
injection vulnerability.

USENIX Association 29th USENIX Security Symposium 2795

Table 1: Example traces of an airdrop hunting transaction targeting the vulnerable contract in Figure 1. Each row, called a trace,
shows an interaction between two contracts in the “From” and “To” columns. In particular, a trace includes certain amounts of
ethers (“Value” column), binary data (“Payload” column) as payload, and whether the interaction succeeds (“Status” column).
The “Address” column indicates how the trace is related to others of the transaction.

Address From To Payload Type Value StatusEntry function Parameters

NULL Attacker Master 0x2b6cab44 0x32 call 0 Success
0 Master Slave1 N/A N/A create 0 Success
0,0 Slave1 Victim transfer(address,uint256) _to: Master, _amount: 1,000,000 call 0 Success (or Failed)
0,1 Slave1 Master N/A N/A suicide 0 Success
. .
49 Master Slave50 N/A N/A create 0 Success
49,0 Slave50 Victim transfer(address,uint256) _to: Master, _amount: 1,000,000 call 0 Success (or Failed)
49,1 Slave50 Master N/A N/A suicide 0 Success

below and explain them.
• Airdrop hunting. Airdrop hunting, as described in our run-

ning example (Section 2.1), leads to token flows from the
victim contract to the master controlled by the adversary.
• Call injection. Call injection, which allows any contract, in-

cluding adversaries, to call a sensitive function in a vulner-
able contract, is often used to make an ownership change
and initiate ether or token transfers.

• Reentrancy. Reentrancy, as mentioned, usually leads to
repeated token or ether transfers from the victim to the
adversary.

• Integer overflow. Only some integer overflow attacks target
a variable recording the token amount owned by a vic-
tim, followed by an adversary transferring the overflowed
amount. Those attacks are in-scope and other integer over-
flows like those causing a denial-of-service are not.

• Honeypot. A honeypot lures a victim to transfer some
ethers or tokens and then participate with bait but no actual
paybacks.

• Call-after-destruct. Call-after-destruct is the invocation of
a function in a destructed contract with ethers, leading to
the loss of these ethers forever. Noted that the call-after-
destruct is different from an out-of-scope suicidal attack, in
which an adversary exploits an unprotected interface and
destroys the victim contract.

3 Methodology
In this section, we describe our measurement methodology.

3.1 Measurement Workflow

We now describe the overall workflow of our analysis as
shown in Figure 3, which can be roughly divided into four
phases. First, in phase (1), we perform several preparation
works including (i) the construction of action trees and re-
sult graphs, i.e., two special representations, from execution
traces and (ii) the manual generation of adversarial transaction
signatures, containing both action and result clauses, for dif-
ferent vulnerability types. Second, in phase (2), we perform
an attack analysis to detect both confirmed and attempted

adversarial transactions using our adversarial transaction sig-
natures. The action clause is matched against the action tree
to find adversarial transactions, and then the result clause is
matched against the result graph to confirm them. Third, in
phase (3), we perform a defense analysis to understand why
certain adversarial transaction fails. We extract the snippet
of code that defends against adversarial transactions and find
more contracts that adopt these defenses via code similarity
analysis. Lastly, in phase (4), we look back at these confirmed
adversarial transactions and analyze whether they can pene-
trate contracts with defense code via an evasion analysis.

3.2 Preparation Phase

In the preparation phase, we convert execution traces of trans-
actions to special representations, i.e., action tree and result
graph. At the same time, we generate adversarial transaction
signatures to match with those two special representations in
the attack analysis.

3.2.1 Action Tree and Result Graph

In this subsection, we discuss the construction of two impor-
tant representations, i.e., action tree and result graph. The
purpose of an action tree is to capture the actions that one
contract performs upon another and represent them in a tree-
like structure, and the purpose of a result graph is to capture
the consequences of performed actions and represent them in
a graph-like structure.

Definitions We now give the definitions of these two repre-
sentations.
• Action Tree. An action tree is a representation of actions in

an ordered tree-like structure, in which each node is a con-
tract and each edge is an action from the source contract
to the destination. An action, defined as what one contract
performs upon another, has three concrete types: create,
suicide, and call. create means that a contract creates
a new contract in the destination address, suicide rep-
resents that a contract removes all its code and transfers
all the ethers it owns to the destination contract, and call
means that one contract calls another contract’s function,

2796 29th USENIX Security Symposium USENIX Association

Transactions
(TXs)

Traces

Replay

(1) Preparation

Action
Tree

Result
Graph

Known
adversarial
TXs

Extract

Invariant
Signature 1

Signature n

Signature
library

Attempted
adversarial
TXs

Confirmed
adversarial
TXs

Manual

(2) Attack Analysis

Defense Contracts

Similarity
Analysis

Contracts with
defenses

(3) Defense Analysis (4) Evasion Analysis

Has confirmed
adversarial TXs?

If yes, then
evaded

Manual reasoning
of evasion

Figure 3: Measurement Workflow.

which could be an explicitly specified function or the de-
fault fallback function. In addition to its type, each action
is annotated with three additional properties: the invoked
function signature (or function definition if available), func-
tion parameters, and trace address (which is used to order
edges).

• Result Graph. A result graph is a representation of results
in a graph-like structure, in which the nodes are unique
contracts and the edges are sensitive results, i.e., ether trans-
fer, token transfer and ownership change, which happens
from one contract to another. Each edge in a result graph is
annotated with the number of transferred ethers or tokens
if applicable.

Note that these two representations have variations, i.e.
either transaction- or contract-centric: Different variations can
be used in the detection of different adversarial transactions.
We now introduce them separately.

Transaction-centric Construction Transaction-centric
construction is to convert the execution traces of each
transaction into these two representations, i.e., action tree and
result graph. First, we construct a transaction-centric action
tree by following the initiating contract and the sequence
of all the actions under that contract and creating edges
from the initiator to the destinations. We then repeat the
process until all the actions in the traces have been used in
the construction.

Second, we construct a transaction-centric result graph by
following all the actions and finding out their corresponding
results for annotation. There are two sources, i.e., action raw
traces and function parameters, to annotate the graph. (i) Ether
transfer values are available in the raw trace associated with
the action. (ii) Ownership and token transfer values are ob-
tained from function parameters if the corresponding function
signature matches the one documented by ERC standards as
shown in Appendix B and the function call succeeds.

Now let us look at the construction of action tree and result
graph (Figure 4) of our running example. We start from the
first record in the traces, i.e., the row with the address NULL

NULL 0 0,0

0,1

49

49,0

49,1

Master

VictimMasterAttacker Slave1

Slave50 Victim

Master

(a) Action tree.

...

token_transfer:
1000000

token_transfer:
1000000

Master

Slave1

Slave50

(b) Result graph.

Figure 4: Two representations of the example traces in Ta-
ble 1.

in Table 1, as the root node to construct action tree. The rows
with the addresses from 0 to 49 are the direct children of the
root node and then nodes with “0,0” and “0,1” are children
of the “0” node. The fully constructed action tree is shown
in Figure 4a. Next, we will extract the function parameter of
each transfer call and construct a result graph annotated with
transferred token values as shown in Figure 4b.

Contract-centric Construction Contract-centric construc-
tion is to convert the execution traces of all the transac-
tions belonging to one contract to our special representations.
Contract-centric representations are useful to capture the
malice of contract-specific behaviors, such as honeypot. We
construct contract-centric representations from transaction-
centric ones. Here are the details. First, we locate all the
transaction-centric action trees that contain the target con-
tract and merge all these trees together in chronological order
based on the target as the root node and other contracts that
perform an action upon the root as the leaves. Second, we
also merge all the result graphs that contain the target and
construct a bigger result graph by merging duplicate nodes.

3.2.2 Adversarial Transaction Signature

In this subsection, we first describe our signature definition
and then present how to generate signatures.

Definition An adversarial transaction signature has two
clauses: action and result. The action clause of a signature

USENIX Association 29th USENIX Security Symposium 2797

create

create

call token
transfer ……

…

c1

cn

c0

call token
transfer …

(a) Action clause.

token
transfer

token
transfercn

c1

(b) Result clause.
Figure 5: Adversarial transaction signatures for airdrop hunt-
ing (a blank cycle represents contracts with no address con-
straints).

is a tree structure that starts from a node C0 and provides
the matching conditions of each level of the tree including
edge properties and contract addresses. Figure 5a shows an
example action clause of our airdrop hunting example: the C0
is the starting node, which has properties like outgoing edges
of create, and then the second-level nodes will eventually call
token transfer function in some of the deeper levels. The three
vertical dots in a level of the tree indicate that there could be
more than one such similar node with a create as incoming
edge, and the three horizontal dots across levels indicate that
there could exist more than one node in between this token
transfer edge and the previous node.

The result clause of a signature is a graph structure in
which node names may be from those in the action clause and
edges provide corresponding matching conditions. Figure 5b
shows an example result clause of our airdrop hunting exam-
ple. Nodes C1 to Cn are from the second level of the action
clause and they all have an outgoing edge to an arbitrary node.

Signature Generation In this part, we describe how to gen-
erate adversarial transaction signatures for attack analysis.
Our generation has two steps: (i) invariant extraction, and
(ii) human reasoning. In the first step, we extract common
nodes and edges, called invariants, from action trees and result
graphs of existing, known adversarial transactions. Then, in
the second step, we rely on human experts to reason about
the correctness of extracted invariants and add or remove con-
straints based on the attack semantics. Our signatures are
opportunistic, and that we do not claim completeness because
our purpose is to perform a measurement study of deployed
attacks in the real world rather than detection of all the attacks.
We will have an estimation of false positives and negatives of
our measurement results in Section 4.

Now let us use our airdrop hunting example to describe
the procedure of generating adversarial signatures shown in
Figure 5. First, we extract common sub-trees and sub-graphs
based on the representations of adversarial transactions simi-
lar to those in Figure 4. The common sub-tree is that a contract
creates many contracts and newly-created ones call the token
transfer of a victim and then destroy themselves. The common
sub-graph is that newly-created contracts transfer a certain
amount of tokens to another contract.

Second, we will manually examine the extracted sub-tree
and sub-graph to generate both clauses of an adversarial trans-
action signature. The manually-collected airdrop hunting at-
tacks typically create at least ten slaves, and we set the thresh-

old of slaves in the sub-tree and sub-graph as two to detect
all the slave creation transactions. Then, we delete the de-
stroy action from the sub-tree because this is not a necessary
step of airdrop hunting though performed in all the collected
adversarial transactions. We also change the destination con-
tract from the master to an arbitrary one as an adversary can
transfer tokens to any contract.

3.2.3 Signature Library

In this part, we list all our adversarial transaction signatures
generated in our library based on the attack and signature
type.

Transaction-centric Signatures We first describe three at-
tack types that require only transaction-centric signatures in
Figure 6.

• Call injection. The action clause (Figure 6a1) is that a con-
tract calls its own function, which usually authorizes the
contract itself, in an inter-contract way and the called func-
tion further proxies sensitive function calls, e.g., a transfer
or ownership change, which is specified by a parameter
from injected function call. The proxied function name
can be embedded in a function parameter via two ways: (i)
function signature and (ii) utf-8 encoded function name.
Next, the result clause (Figure 6a2) specifies that the in-
jected function call benefits any of the ancestor nodes, i.e.,
C0, in the action tree in terms of ethers, tokens or owner-
ship.

• Reentrancy. The action clause (Figure 6b1) is that a con-
tract (C0) calls another contract (Ci), which may call some
other contracts but eventually will call C0, and such looped
invocation behavior will involve at least one transfer func-
tion. The result clause (Figure 6b2) is that the result edge
caused by the transfer function in the loop of action tree
may point to another contract of the adversary outside the
loop.

• Integer Overflow. The action clause (Figure 6c1) is that a
contract (C0) calls a known sensitive token transfer function
that contains a parameter, i.e., a value bigger than 1072

being close to the maximum range of signed 256-bit integer,
to trigger the vulnerability. Next, the result clause is that
C0 transfers tokens to another contract belonging to an
adversary.

Contract-centric Signatures We now describe another
three attack types that require contract-centric signatures in
Figure 7.

• Honeypot. An action clause (Figure 7a1) is that the hon-
eypot (C0) is created and set up by another contract (C1)
and then accepts function calls from other non-owner con-
tracts (e.g., C2 to Cn). In the end, C0 suicides and transfers
collected ethers to C1. A result clause (Figure 7a2) is that
C1, although first makes investment, benefits from C0 and
other contracts that transfer ethers to C0 get no payback.

2798 29th USENIX Security Symposium USENIX Association

call with
parameter p

call
function f

determines

…call any
transfer… …c0 c1 c1

(a1) Action clause.
any

transfer c0

(a2) Result clause.

(a) Call injection.

call ether/token
transfer

call… … …cic0 cn c0

(b1) Action clause.

ci
ether/token

transfer

(b2) Result clause.

(b) Reentrancy.

c0
call token transfer

with large parameter p …

(c1) Action clause.

c0
token

transfer

(c2) Result clause.

(c) Integer overflow.

Figure 6: Transaction-centric signatures.

c0

create

c1

c1
call c2call

cn

call

c1

call

(a1) Action clause.

c0

c2

cn

c1

ether transfer

ether transfer

ether transfer

(a2) Result clause.

(a) Honeypot.

c0
suicide

c1

call ether
transfer

(b1) Action clause.

c0 c1
ether

transfer

(b2) Result clause.

(b) Call-after-destruct.

Figure 7: Contract-centric signatures.

• Call-after-destruct. An action clause (Figure 7b1) is that
C0 first suicides and then another contract, e.g., C1, still
calls with ether transfer of C0. A result clause (Figure 7b2)
is that ethers are transferred from C1 to C0.

3.3 Attack Analysis Phase

Our attack analysis matches adversarial transaction signatures
against action trees and result graphs of transaction execution
traces. The analysis, by its nature, has two stages: action and
result clause matching. The former finds attempted adver-
sarial transactions, and the latter confirms those adversarial
transactions.

3.3.1 Action Clause Matching

We match action clause by traversing through all the nodes
in the action tree. The first step is to match the root node C0
and if the root matches, we will match further levels. Then, if
all levels match, we consider the action tree matches with the
specific action clause. Let us again use the airdrop hunting
example in Figure 1 to describe the matching. When we
traverse through an action tree, we will find that the master
node in Figure 4a matches with C0 in Figure 5a because C0
has many create actions on the outgoing edges. Then, C1 to
Cn also matches with Slave1 to Slave50, because they all call
token transfer function. Since all the nodes and edges in the
action clause are matched, we consider that the action tree
in Figure 4a is a match, i.e., at least an attempted adversarial
transaction.

3.3.2 Result Clause Matching

We perform result clause matching by checking each node and
edge. Specifically, during action clause matching, we have
recorded all the node addresses and matches them with real-
world contracts. In this matching, we will confirm that the
result graph also has corresponding nodes and edges. Here
is how it works in our airdrop hunting example. Since we

know that C1 to C50 are slave contracts, we will see whether
they have transferred all the tokens to another contract. In the
case of Figure 4b, all the slaves transfer tokens to the master,
which is C0. That is, the result clause matches the result graph
as well, which confirms the adversarial transaction.

3.4 Defense Analysis Phase

Our defense analysis phase has two steps: (i) behavior-based
security check (i.e., the defense) identification, and (ii) ex-
tended defense mining with similarity analysis. Let us start
from the first step. Our observation here is that most smart
contracts implement defenses via Solidity functions that affect
control flows [20], such as require, assert and revert, to
abort an execution if being attacked. That is, if an attempted
transaction fails to meet the conditions in these functions,
its trace returns directly with a Reverted error. Therefore,
we extract the control-flow-related statements that cause the
failure as the security checks for the second step.

Second, we perform a backward dataflow analysis from the
security check to extract all the sources of the check. Then, we
use the security check and all the sources as the basis for the
similarity analysis. The insight here is that once two contracts
perform the same check on common input sources, they tend
to use the same defense tactic. Therefore, we extract such
a backward dataflow for all the open-source contracts and
compare the extracted dataflow with the one with a certain
defense. If both the security check and the sources match for
these two contracts, we will consider that the target contract
adopts the same defense.

We now look at a concrete example, i.e., the isHuman mod-
ifier in Figure 2. We first extract the security check that leads
to a failed transaction, which is at Line 6. Then, we perform
a backward dataflow analysis to find all the sources used in
the check, in this case, the return value of extcodesize()
at Line 5. Lastly, we find similar contracts by searching for

USENIX Association 29th USENIX Security Symposium 2799

the use of extcodesize() and the comparison of the return
value of extcodesize() with zero.

3.5 Evasion Analysis Phase

The purpose of our evasion analysis phase is to understand
whether existing defenses have been evaded by new attacks.
The analysis has two steps. First, we will analyze the con-
tracts with defenses found in our defense analysis and see
whether such contracts have confirmed adversarial transac-
tions. Second, if these contracts have confirmed adversarial
transactions, i.e., they are being penetrated regardless of the
defense, we will further confirm and reason whether the ad-
versarial transactions have indeed bypassed the corresponding
security check adopted in the defense.

4 Implementation and Manual Analysis
In this section, we start from our implementation and pre-
liminary results produced from automatic analysis. Then, we
describe our manual efforts in reducing the false positives and
estimating the false negatives.

4.1 Implementation and Preliminary Results

Our implementation of attack analysis is in 3,977 lines of
Python code. We apply our implementation on execution
traces from public service, particularly the Google BigQuery
traces [12], for analysis. Note that the traces obtained from
Google are the same as what we execute EVM in an archive
mode ourselves and we adopt Google’s traces to save execu-
tion time and storage space. The snapshot that we adopted has
1,063,473,983 rows of trace records of 420 million transac-
tions until March 2019. The preliminary results of our study
are shown in Table 2: Call injections affected the highest num-
ber of contracts and airdrop hunting has the highest number
of adversarial transactions.

4.2 Manual Analysis

In this part, we perform a manual analysis to filter false posi-
tives from our preliminary results and estimate false negatives
that are missed in our study.

4.2.1 Methodology and Metrics

Our methodology of manual analysis is as follows. We asked
three non-author domain experts to manually review whether
unique, non-duplicate contracts are vulnerable and then exe-
cute a selected number of unique adversarial transactions of
each contract. Domain experts are provided with collected
datasets and open-source tools [30,31,33,41] in the validation
of contracts. They can also inspect each candidate transaction,
e.g., whether transactions have triggered multiple successful
Distr or Airdrop events for the airdrop hunting case. One
thing worth noting is that domain experts cannot determine
whether 58 closed-source contracts with call injection attacks,
not included in Table 2, are vulnerable. Since the total ether
loss of those closed-source contracts is less than ten and the

total token loss is ignorable, we decide to exclude them from
our study.

We adopt three metrics in evaluating our manual analy-
sis, which are evaluation time, agreement rate and Fleiss’
kappa [14]. The first is a standard evaluation of how long it
takes for human experts to perform all the work, the second is
the percentage of analyzed contracts that all three experts con-
sider as vulnerable, and the last a widely-accepted coefficient
to measure inter-rater reliability for qualitative data. Three
experts take around 30 hours each to evaluate 1,272 contracts
and achieve 96.78% agreement rate and 96.47% Fleiss’ kappa.
Note that many ERC20 token contracts are similar to each
other, which greatly reduces human effort.

In 3.22% of cases there were disagreements among human
experts, and we asked them to discuss their labeling criteria. In
all cases they reached an agreement after the discussion. Here
is one example: An ERC 20 contract has an integer overflow
vulnerability, but adversarial transactions are targeting another
integer underflow vulnerability. One domain expert labels it
as true positive and the other two as false positive: After
discussion, they agreed on false positive for this example.

4.2.2 Manual Filtering of False Positives

We manually analyze all the transactions and contracts in our
preliminary results to find and filter false positives. Table 2
shows the number and rate of false positives and also true
positives after filtering. We mainly have false positives for
three attack categories, i.e., call injection, integer overflow,
and honeypot. Let us explain them separately. First, the false
positives of call injection come from the usage of on-chain
wallet library, where the library proxies sensitive function
calls, like ownership change and ether transfer, specified by
input data from wrapper contracts. Second, the false positives
of integer overflow are that some toy contracts multiply the
number of tokens they provide for fun, and therefore our study
mistakenly considers the large token transfer as an integer
overflow attack. Lastly, we incorrectly report some betting
and lottery contracts with only one winner as honeypots.

4.2.3 Manual Estimation of False Negatives

Because there is no ground truth, we have to create a bench-
mark and estimate the false negatives of our study. Particularly,
we contacted the authors of 11 prior works [23, 27–31, 33,
36, 39–41] on detecting smart contract vulnerabilities and ob-
tained eight replies and six datasets with vulnerable contracts
as shown in Table 4. We then sample contracts that are re-
ported by prior works but do not have adversarial transactions
reported by our work to estimate false negatives as shown in
Table 2. Note that we exclude 38.18% of the candidates with
only one creation transaction, which apparently is not adver-
sarial. We then ask our domain experts to go through all the
transactions of these contracts and estimate false negatives.

Table 3 shows the estimation of false negative. We only
have false negatives for 16 pseudo-bank honeypot contracts

2800 29th USENIX Security Symposium USENIX Association

Table 2: A summary of vulnerable contracts and adversarial transactions before and after manual filtering of false positives.

Vulnerability Preliminary Results False Positives (FPs) True Positives (TPs) after Manual Filtering

contract # confirmed atx # contract # confirmed atx % contract % atx # contract # confirmed atx # attempted atx

call injection 642 2,996 20 286 3.12% 9.55% 622 2,710 1,494
reentrancy 26 1,948 0 0 0 0 26 1,948 32
integer overflow 56 319 6 36 10.71% 11.29% 50 283 1,367
airdrop hunting 198 100,336 0 0 0 0 198 100,336 57
call-after-destruct 228 1,761 0 0 0 0 228 1,761 0
honeypot 156 266 15 29 9.62% 10.90% 141 237 0

Total 1,272 107,610 41 351 3.22% 0.33% 1,231 107,259 2,633

* atx denotes Adversarial Transactions.

Table 3: Manual estimation of false negatives.

Vulnerability Evaluation Set False Negatives (FNs)

contract # atx # contract # atx % contract % atx

call injection 8 13 0 0 0 0
reentrancy 50 648 0 0 0 0
integer overflow 50 902 0 0 0 0
airdrop hunting - - - - - -
call-after-destruct 50 811 0 0 0 0
honeypot 192 1,100 16 129 8.33% 11.73%

Total 400 4,546 16 129 4.00% 2.84%

* atx denotes Adversarial Transactions; we leave the FN rates of airdrop hunting
as “-” because there are no prior works studying this vulnerability.

Table 4: Availability of related researches’ results.

Name Reply? Data? Unique Contracts Data Until

Oyente [31] 3 3 7,527 2016-05-05
ZEUS [29] 3 3 1,148 2017-03-15
Maian [33] 7 7 - -
SmartCheck [39] 3 7 - -
Securify [41] 3 3 12,276 2017-03-04
ContractFuzzer [28] 3 7 - -
Vandal [23] 3 3 101,826 2018-08-30
MadMax [27] 7 7 - -
teEther [30] 3 3 1,532 2017-11-30
Sereum [36] 7 7 - -
HoneyBadger [40] 3 3 282 2018-10-12

Total - - 112,570 -

that pretend to provide bank service for users without setting
any bonus—this violates our definition of honeypot in pro-
viding bonus. Note that interestingly, we also find some false
positives in HoneyBadger’s dataset [16]: Specifically, Honey-
Badger marked 15 contracts as honeypots but indeed users are
capable of gaining profits from them. Our manual verification
shows that 13 of them are real lottery and roulette contracts
and two are incorrectly-configured honeypots in which users
can guess the correct password to win.

5 Results
In this section, we discuss our manually-verified measure-
ment results as summarized in the true positives part
of Table 2. In the spirit of open science, we openly
release our full results, i.e., all the adversarial transac-
tions, in this URL (https://drive.google.com/open?
id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi).

In the rest of the section, we first present real-world adver-
sarial transactions against vulnerable contracts in Section 5.1
and then real-world defenses in Section 5.2.

5.1 Real-world Adversarial Transactions

In this subsection, we present our estimation of ether or to-
ken losses of adversarial transactions that we find in the
Ethereum blockchain. Here is our methodology of estimating
such losses based on different attack categories.
• Reentrancy, integer overflow and airdrop hunting: We get

the raw data of ether/token losses by adding up the absolute
profits and subtracting the cost of the attacker for each
transaction.

• Call injection: The call injection attacks we find lead to the
ownership change of contracts. Our estimation is to sum
up all the ethers or tokens transferred by attackers after the
ownership changes.

• Honeypot: We sum up all the ethers transferred by victims
to the honeypot across multiple adversarial transactions.

• Call-after-destruct: We sum up all the ethers transferred to
the destructed contracts.
We then estimate the monetary losses based on the his-

torical price of ether on Etherscan [13] and tokens on
CoinGecko [11]. Note that we are only able to collect the
historical price of 13 tokens among all the 259 involved to-
kens: The value of the rest tokens is considered as zero in our
conservative estimation.

Next, we present our loss estimation from two aspects:
well-known incidents that are widely reported in the news and
other less-known incidents.

5.1.1 Well-known Attack Incidents

In this part, we describe three well-known attack incidents
that happen in the history of Ethereum ecosystem and their
corresponding losses in Table 5. We categorize all the losses
into two parts: direct and actual. Direct loss means that the
number of ether loss due to all the adversarial transactions
against the vulnerability; actual loss means the amount after
deducting the ethers that are saved due to certain tactics—
e.g., hard fork and white hat hacking—deployed during the
attack. We will describe more details on white hat hacking in
Section 6 and only describe the numbers here.
• TheDAO. TheDAO, maybe the most famous attack in

Ethereum history, is a reentrancy attack. The total amount
of confirmed adversarial transactions against TheDAO con-
tract is huge, equaling 11.8 million ethers. However, be-
cause the community adopts a hard fork and many white

USENIX Association 29th USENIX Security Symposium 2801

https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi
https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi

Table 5: Ether and monetary losses of well-known incidents.

Incident # contract # tx Loss

Direct (Ether / $) Actual (Ether / $)

TheDAO 1 1,84811,829,473 / $160,146,744 529,041 / $6,213,195
Parity Wallet Hack 622 2,710 204,851 / $40,700,890 154,999 / $31,009,177
SpankChain 1 8 165 / $37,321 165 / $37,321

* Note that although the actual ether loss of Parity Wallet Hack is less than
the one of TheDAO, the monetary loss is higher due to the difference in
historical ether price.

hat hackers try to save TheDAO, the actual loss is rela-
tively small. Specifically, we have observed that 7.6 mil-
lion ethers are saved via white hat hacking. The attackers
have transferred 3.6 million ethers to the DarkDAO [1],
but all the ethers are mandatorily transferred to Withdraw-
DAO [2] due to the hard fork [24] in July 2016. The rest
(i.e., 529,041 ethers), excluding these saved by hard fork
and white hat hacking, is considered as the actual loss.

• Parity Wallet Hack. Parity Wallet Hack is a call injection
attack, in which the vulnerability is in the Parity Wallet
library used by many other contracts. We have observed
that 622 contracts using Parity Wallet have been attacked,
leading to a total direct loss of around 200K ethers. Similar
to TheDAO, whitehat hackers have also saved some losses
and the actual loss, according to our analysis, is around
155K ethers.
• SpankChain. SpankChain is another reentrancy attack tar-

geting the SpankChain contract, a popular ERC20 token
with a market capitalization of $6.3 million in August 2019.
The loss is only 165 ethers ($37,321), a relatively small
number compared to prior incidents. The reason is that
SpankChain adopts multiple pluggable modules and the
adversary is only able to compromise one of its many pay-
ment contracts, leading to a 165 ether loss. We did not see
any saving tactics that have been adopted for SpankChain
and therefore the actual and direct losses are the same.

5.1.2 Attacks against Other Vulnerable Contracts

In this part, we describe adversarial transactions that target
other contracts beyond well-known incidents in Table 6. Air-
drop hunting is the largest with $322K monetary loss due to
token loss. The loss of honeypot contracts is relatively small,
which only has $80K. We estimate the loss of integer over-
flow as zero, because we could not find any historical price of
tokens involved in adversarial transactions targeting integer
overflow. We also break down the losses into ether and token
as shown in Table 6. Integer overflow and airdrop hunting
do not cause any ether loss due to the nature of the attack;
on the contrary, both attacks cause a huge amount of token
loss. Reentrancy attacks also cause some token loss, relatively
smaller than integer overflow and airdrop hunting. Honeypot
and call-after-destruct have the least ether loss.

Next, we break down adversarial transactions into those
against known and zero-day vulnerabilities separately.

Table 6: A summary of our results in terms of vulnerable
contract (vct), confirmed adversarial transactions (atx) and
total loss. Note that we exclude three most famous incidents
in Table 5 from this table.

Attacks Known Zero-day Total Loss

contract # atx # contract # atx ether / token monetary

call injection - - - - - / - -
reentrancy 18 56 6 36 6,080 / 5.01E+23 $142,945
integer overflow 34 167 16 113 - / 7.79E+79 -
airdrop hunting - - 197 100,278 - / 3.59E+28 $322,010
call-after-destruct 154 1,547 74 214 472 / - $100,102
honeypot 90 148 51 - 427 / - $80,866

Total 285 1,904 344 100,641 6,979 / 7.79E+79 $645,848

* atx: Adversarial Transactions (we mean confirmed atx in this table and
skip “confirmed” due to space limits), “-”: we do not observe any in our
analysis or cannot estimate. We cannot estimate the monetary loss for
integer overflow because we cannot find any historical prices of tokens
involved in the adversarial transactions.

Vulnerable Contracts Reported by Prior Works We first
describe adversarial transactions targeting contracts reported
by prior works. As shown in Table 4 and 6, prior works have
found 112,570 vulnerable contracts and 298 of these contracts
are indeed attacked in real-world, i.e., with 2,061 adversarial
transactions in total. This shows a gap between what has been
attacked and what has been detected by prior work.

Call-after-destruct has the highest number (i.e., 154) of
attacked contracts and a considerable amount (i.e., 90) of
honeypots also attract real-world victims. We did not report
any call injection because all the observed call injections
belong to Parity Wallet Hack; similarly, no prior works have
found any airdrop hunting, thus all are categorized as zero-
day.

Zero-day Vulnerable Contracts We describe several zero-
day vulnerabilities that are not detected or reported by prior
works. Our methodology of verifying zero-day vulnerabilities
is in four steps as follows. First, we adopt the same six datasets
with vulnerable contracts as shown in Table 4 to exclude
known vulnerabilities. For reentrancy, we also check and
exclude the new patterns found by Sereum paper. Second, we
execute existing open-source tools including Mythril, Maian,
Securify and teEther to exclude those that can be detected.
Third, we check the CVE database with keywords Smart
Contract and Ethereum to exclude these that are available
in the database. Lastly, we exclude the vulnerable contracts
that have been publicly reported on their websites if available.

Note that as our obligation of responsible disclosure, we
have reported all the zero-day vulnerabilities to the contract
authors if available online. Specifically, we search for authors’
contact information via three ways: (i) source code and com-
ments, (ii) contract main page on Etherscan, and (iii) Google
search with the contract address and name. Finally, we have
collected the authors’ contact information of 42 vulnerable
contracts (out of 285 zero-day vulnerable contracts) and com-
municated to them regarding the found vulnerabilities. At
the same time, we have also reported all the reentrancy and

2802 29th USENIX Security Symposium USENIX Association

integer overflow zero-day vulnerabilities to CVE. As CVE
does not maintain a vulnerability category for airdrop hunting,
we have requested to create a new category.

Our results, i.e., the total number of zero-day vulnerable
contracts and corresponding transactions, are shown in the
“zero-day attacks” column of Table 6. As stated, because
no prior works have studied airdrop hunting, almost all the
airdrop hunting vulnerabilities except for one reported in-
cident [7] are categorized as zero-day. We also find many
zero-days for well-known vulnerabilities and describe them
below.

• Zero-day Reentrancy. We find six zero-day reentrancy at-
tacks. The main reasons are twofold. First, these zero-day
vulnerable contracts adopt function parameters, objects or
even another contract to store contract states rather than
basic data types like integer. Existing works—no matter
static ones like Securify and Mythril or dynamic ones like
Sereum—will miss such state updates due to the inaccuracy
in the dataflow analysis. Second, these zero-days are cross-
function reentrancy, which cannot be detected by Oyente
and ZEUS considering only same-function reentrancy.

• Zero-day Integer Overflow. We find 16 zero-day in-
teger overflow vulnerabilities because none of prior
works has studied integer overflows in token contracts
with multi-transfer functionality, e.g., batchTransfer and
multiTransfer functions as an extension to ERC20 stan-
dard. Existing works, i.e., Mythril and ZEUS, which claim
to check every arithmetic operation, have coverage prob-
lem. Particularly, Mythril leverages heuristics to locate all
the functions based on known signatures, which do not
contain the aforementioned new multi-transfer functions.
ZEUS does not model the Ethereum state, thus being un-
able to reach these vulnerable functions.

• Zero-day Honeypot. We find 51 zero-day honeypots with
profits, i.e., those that are missed by HoneyBadger, the only
honeypot detection work. There are three major reasons.
First, we find 42 zero-day honeypots due to incomplete
signatures of HoneyBadger. 38 zero-days are hidden state
update honeypots according to HoneyBadger’s classifica-
tion. In those honeypots, the owner, i.e, the adversary, pays
to change the honeypot password and then withdraws the
paid money, but HoneyBadger’s signature assumes that a
honeypot owner needs to call a password change function
without paying any ethers. The rest four zero-days are hid-
den transfer honeypots according to HoneyBadger. The
misdetection is because those contracts put the logic of
preventing victims from transferring money in an invisible
long line as opposed to transferring the bait out as modeled
by HoneyBadger. Second, we also find a new class of hon-
eypots with two contracts, called racing time, which attract
users to save ethers with high interest but only leave a short,
or even no time window to withdraw. Lastly, we also find
seven honeypots with patterns known to HoneyBadger but
out of their detection window.

• Zero-day Call-after-destruct. We find 74 zero-day call-
after-destruct vulnerabilities: The major reason is that many
contract destructions are initiated by the owners, which are
not modeled by prior works like Maian and teEther. How-
ever, other contracts can still call the destructed contracts
on the chain despite that the owner destructs it. Destructed
contracts can be divided into two categories. First, users
are unaware of the contact destruction and continue to par-
ticipate, thus leading to a loss of money. Second, when a
library contract is destructed, many contracts that rely on
the library may continue to pay for their services.

5.2 Real-world Defenses against Adversarial Transac-
tions and Evasions against Defenses

In this subsection, we present all the defenses found by our
work and their deployments in real-world contracts. Our
dataset comes from 5.8 million open-source contracts from
Etherscan, which can be reduced to 57K unique contracts.
Once we recognize that a defense is deployed by a contract,
we evaluate the effectiveness of the defense in terms of pre-
vented and successful adversarial transactions. Here are the
results. Our analysis finds six defense classes with attempted
adversarial transactions as shown in Table 7. Without loss
of generality, we also collect defense libraries from popular
secure smart contract library OpenZeppelin [18] and find that
all its defenses are already included in our results. Now let us
look at the details of each defense in terms of prevented and
successful adversarial transactions.

• onlyOwner. onlyOwner is a Solidity modifier that
checks whether a function caller is the contract owner
so as to prevent some over-privileged operations, such as
changeOwner (which literally changes the contract owner)
and mint (which changes the current supply of token).
onlyOwner is a widely-adopted defense used by 2,148,200
contracts, because onlyOwner is a general defense that
prevents any privilege escalation attacks.
In practice, we did not observe any adversarial transactions
that are prevented directly by onlyOwner. The likely rea-
son is that adversaries will not launch an attack given the
existence of onlyOwner. We do observe 2,691 transactions
that evade onlyOwner: All such transactions are exploiting
the Parity Wallet library vulnerability. Particularly, the ad-
versary circumvents the onlyOwner defense by changing
the contract owner using a call injection vulnerability.

• isHuman or isContract. This defense checks the code
size of a contract to decide whether the caller is a human
or a contract, which serves as a bot detection purpose. The
intuition is that the code size of a human is zero and the
one of a contract is not. This defense is deployed by 21,672
contracts: 36 are airdrop token contracts and the rest in-
clude Fomo3D-like [8] ones that reward participants for
guessing a correct secret number and other token contracts
which handle contract and human invocations separately.

USENIX Association 29th USENIX Security Symposium 2803

Table 7: Defense techniques against different attacks.

Defense Checked Values # of deployed ct Target Attack # of prevented atx # of successful atx

onlyOwner msg.sender 2,148,200 privilege escalation∗ 0 2,691state variable owner

isHuman extcodesize() 21,672 airdrop hunting 14 887isContract

anotherIsHuman tx.origin 3,416 airdrop hunting 3 0anotherIsContract msg.sender

canDistr state variable distributionFinished 2,505 airdrop hunting 21 65,240

nonReentrant state variable _guardCounter 952 reentrancy 77 0

SafeMath function parameters 3,110,124 integer overflow 1,161 55
* Privilege escalation can be the consequence of many existing attacks, such as call injection. onlyOwner is a general defense against such escalation.

We have observed that this defense is successful in prevent-
ing 14 automatically-launched adversarial transactions. As
mentioned in Section 2.1, this defense can be circumvented
via embedding code in the contract’s constructor function
where the code size equals to zero as the contract has not
been constructed yet. We have observed 887 adversarial
transactions that evade deployed defenses.

• anotherIsHuman or anotherIsContract. This defense
checks whether the origin of transaction equals the sender
of the message to ensure that the message sender is not a
slave of another master contract. The defense is deployed
by 3,416 token contracts. Since the defense is effective
in defending against airdrop hunting, we have observed
only three transactions that try, but fail to circumvent the
defense. We did not observe any adversarial transactions
that can evade this defense.

• canDistr. canDistr is a defense that checks the total num-
ber of distributed airdrops to limit the total amount of loss
due to airdrop hunting. Such a defense, deployed by 2,505
contracts, is only effective once the hunted airdrops exceed
a certain amount. As expected, due to the nature of this
defense, it only prevents 21 adversarial transactions when
the total hunted airdrops exceed the limit. On the contrary,
there are 65,240 adversarial transactions that succeed in
obtaining illegitimate airdrops, i.e., evaded this defense.

• nonReentrant. nonReentrant is a defense that checks the
state variable _guardCounter to ensure that the function
is only invoked once during a transaction. The intuition
is that if the function, e.g., a token or ether transfer, is
recursively invoked more than once in one transaction, a
reentrancy attack is in place. nonReentrant is deployed by
952 contracts to prevent reentrancy attacks.
We have observed 77 adversarial transactions that are pre-
vented by the nonReentrant defense. Because the defense
is effective, we did not observe any adversarial transactions
that evade this defense.

• Sa f eMath. Sa f eMath is a defense library that pro-
vides safe arithmetic operations including addition, sub-
traction, multiplication and division for Solidity contracts.
Sa f eMath, the most widely-adopted defense by 3,110,124
contracts, checks whether the operation results have any

< 10

 100

 1000

 10000

 100000

2016.01 2016.07 2017.01 2017.07 2018.01 2018.07 2019.01

TheDAO

Parity Wallet

SpankChain

airdrop hunting
reentrancy

integer overflow
call injection

call-after-destruct
honeypot

Figure 8: The distribution of adversarial transactions broken
down by attack type over time (We marked three well-known
incidents in the graph; we excluded all the transactions with a
number less than 10 to make the graph clear to view).

integer overflows or underflows.
We have observed that Sa f eMath is successful in defend-
ing against 1,161 adversarial transactions that target in-
teger overflow vulnerabilities. Interestingly, we also ob-
served that Sa f eMath is evaded due to incomplete deploy-
ment, i.e., mixed use of Sa f eMath functions and normal
arithmetic operations. Note that although prior report [10]
warned incorrect implementations of Sa f eMath, we did
not observe any adversarial transactions.

6 Observations and Advices
In this section, we describe several observations made from
our measurement results and also give some advice to existing
security researchers based on our observations.

6.1 Observeations

We present two observations below.

Observation 1 [Attack Strategy Shift]: The major attack
tactics adopted by real-world adversaries evolve from reen-
trancy in 2016 and call injection in 2017 to honeypot in 2018
and airdrop hunting in 2019.

Our first observation states that the attack tactics shift over
time: For example, Figure 8 shows that after the famous
TheDAO and Parity Wallet incidents, the amount of adversar-

2804 29th USENIX Security Symposium USENIX Association

Table 8: Peak period of different attack tactics (The average
transactions per month of attacked contracts drop significantly
after the attack peak).

Vulnerability Attack Peak % atx Average # tx per month

Before Peak After Peak

reentrancy 2016.6 - 2016.8 97.04% 180 0
call injection 2017.7 79.40% 22 0
integer overflow 2018.8 - 2019.1 70.10% 6,007 24
airdrop hunting 2018.8 - 2019.3 82.90% 7,106 167

* atx: adversarial transactions.

ial transactions targeting both reentrancy and call injection
drops significantly. We believe that such a shift of attack tac-
tics is due to the following three reasons:

Reason 1.a: As the smart contract evolves, new attack sur-
faces are introduced as well.

The first reason for attack strategy shift is that many new
attack tactics are targeting contracts with new features as well.
Let us analyze integer overflow and airdrop hunting sepa-
rately. The burst of integer overflow in 2017 and 2018 is due
to the emergence of contracts with multi-transfer functionality,
i.e., transferMulti, batchTransfer and multiTransfer,
as compared to the old, unprofitable integer overflow vulnera-
bilities in loop conditions as found by prior works [9, 31].

The burst of airdrop hunting in 2018 and 2019 is because
the first airdrop tokens were only spotted in late 2017 and
then became much more popular in October 2018. For exam-
ple, our investigation shows that 851 airdropping contracts
have emerged between June 2018 and October 2018. The fast
introduction of airdropping contracts leads to corresponding
airdrop hunting attacks as well.

Reason 1.b: The breakout of attacks drains off all the high-
value, vulnerable contracts, causing the follow-up attacks
unprofitable.

The second reason for attack strategy shift is that after the
breakout of each attack category, e.g., reentrancy and call
injection attack, the rest contracts with similar code patterns
are of low-value, i.e., being not worth of attacking. Table 8
shows the peak period of each attack category and the average
number of transactions of vulnerable contracts before and
after the peak. Clearly, the number of users drops significantly
after being attacked.

One exceptional category that attackers always like to adopt
from its emergence in 2017 until recently is honeypot con-
tracts, the transaction amount of which distributes almost
evenly across the time axis. The reason is that there exist no
defenses for a honeypot contract, in which the owners are the
adversaries waiting for adventurers to fall into the pit.

Reason 1.c: Most contracts die with very few number of trans-
actions after being attacked.

We observed a dramatic drop in the number of contracts’
transactions the month after being attacked. Over 95% of
the attacked contracts suffer an over 75% drop in terms of
transactions, and 81.69% contracts have no transactions at all

after being attacked. Table 8 shows the average number of
normal transactions before and after the attack peak periods
broken down by different attack tactics. This clearly shows
that most contracts die after being attacked.

We also analyze the contracts that survive the attacks and
report the reasons. One typical kind of survivors are airdrop
token contracts. The core reason for their survival is that their
vulnerabilities are time-limited. Specifically, these token con-
tracts only airdrop newcomers during a “promotion period”.
Therefore, the amount of airdrop token is actually limited,
preventing attackers from draining all the token. The represen-
tative of another kind of survivors is SpankChain. Among all
the public security incidents, the attacks against SpankChain
caused the least loss. Our manual analysis shows that this
is due to the modular design of SpankChain contracts. The
attacker was only able to compromise one payment channel
smart contract of SpankChain, which contains a limited num-
ber of ethers compared to its market capitalization (less than
1%). What’s more, the modular design enables SpankChain
team to apply a quick patch by just replacing the vulnerable
payment contract, without affecting other modules.

Observation 2 [“Benign” Adversarial Transactions]:
Some attacks are launched by white hat hackers to save vul-
nerable contracts.

Our second observation is that some adversarial transac-
tions, although exploiting a vulnerability, could be “benign”
as well. Particularly, many white hat hackers, being aware of
the existence of a vulnerability, may exploit it and compete
with real adversaries. These white hat hackers will return all
the saved ethers and tokens back to the victims afterward. We
have observed this trend for both TheDAO and Parity Wallet.

• “Benign” Adversarial Transactions for TheDAO. We ob-
served that 97 adversarial transactions from seven contract
addresses, i.e., 5.25% of total adversarial transactions of
TheDAO attack, are from “White Hat Group”(WHG) mem-
bers. All the ethers obtained by these seven addresses—
which are 7.9 million ethers—are eventually transferred to
a newly-created WithdrawDAO contract [2]. Then, a victim
of TheDAO attack can claim those ethers by calling the
contract’s withdraw function, which returns the victim’s
balance in TheDAO contract back. In August 2019, there
still exist 120K ethers in the WithdrawDAO contract.

• “Benign” Adversarial Transactions for Parity Wallet. We
observed that 1,959 adversarial transactions, i.e., 72.29%
of total adversarial transactions of the Parity Wallet attack,
are also from “White Hat Group”(WHG) members, with a
total number of 50K ethers. A similar refund contract [3]
has also been deployed for victims to get their ethers back.

6.2 Advices

We now present two advices that we are suggesting for smart
contract research.

Advice 1 [Improving Existing Program Analysis]: We sug-

USENIX Association 29th USENIX Security Symposium 2805

gest to improve existing program analysis, such as supporting
inter-contract dataflow analysis and increasing code cover-
age.

Our first advice is to improve existing program analysis,
because many zero-day vulnerabilities of traditional attack
categories are discovered in our study due to the imprecision
of prior analysis. For example, several zero-day reentrancies
are due to the fact that state variable is stored in a cross-
contract location, and zero-day integer overflows are because
some code branches, such as new interfaces, are not covered
during static analysis. Therefore, we suggest existing secu-
rity analysis tools using program analysis to include such
important factors.

Advice 2 [Keeping Pace with New Strategies]: We suggest
to look for new attack strategies adopted by adversaries and
keep pace with corresponding detections and defenses.

Our second advice is that we should keep looking for new
attack strategies adopted by adversaries, such as airdrop hunt-
ing studied in this measurement, and then study defenses
and detections. Those new attack strategies usually gain very
popular within adversaries due to the lack of corresponding
defenses and therefore should be of high priority in our re-
search community once emerged.

7 Related Work
In this section, we discuss related work on smart contracts
from two aspects: (i) static or dynamic analysis of contracts
in detecting vulnerabilities, and (ii) transactional analysis of
attacks.

7.1 Smart Contract Vulnerability Detection

Researchers have proposed many works in detecting smart
contract vulnerabilities, especially the traditional ones like
reentrancy, integer overflow and call injection. On one hand,
Oyente [31], Mythril [9], Manticore [5], Vandal [23], Secu-
rify [41] and teEther [30] adopt static analysis, e.g., symbolic
execution, to detect an execution path between a source, e.g.,
a contract input, and a vulnerable sink. Bhargavan et al. [21]
present preliminary work to use existing verification systems
to validate smart contracts. ZEUS [29] transfers low-level
bytecode to LLVM IR [17] and applies static symbolic model
checking to detect whether a violation exists. On the other
hand, Sereum [36], a dynamic analysis tool, provides runtime
protection against reentrancy attacks and also detects many
real-world, new reentrancy patterns that have never been re-
ported before. ContractFuzzer [28] first leverages dynamic
testing method [15] to find vulnerabilities in smart contracts.
It generates testing inputs from the ABI specifications of
contracts and instruments EVM to determine whether vulner-
abilities are triggered.

Researchers have also proposed many new vulnerabilities
in smart contracts. Maian [33] is the first to propose a class
of so-called trace vulnerabilities that have to be triggered by

multiple invocations over a contract which belongs to a spe-
cial type of call-after-destruct. Gasper [25] first points out
the extra gas cost caused by under-optimized contract code.
MadMax [27] further focuses on EVM gas-focused vulnera-
bilities, for example, unbounded mass operations leading to
an out-of-gas exception. This vulnerability will cause a DoS
consequence with no direct ether or token losses. Torres and
Steichen [40] observe the rising of honeypot contracts and
summarize the techniques adopted by the honeypots.

As a general comparison, our measurement study focuses
on these vulnerabilities that are attacked in the real world, but
not these contracts that can be attacked. Our study does point
out a gap between what has been detected by prior works and
what has been attacked—this sets off alarm bells to security
researchers on what needs to be studied in the future.

7.2 Transactional Analysis

Researchers have also proposed to analyze smart contract
transactions and understand, to some degree, what has been
attacked in the past. For example, Sereum replays 78 mil-
lion transactions involved in the first 4.5 million blocks of
Ethereum and confirms reentrancy attacks of two exploited
contracts. HoneyBadger crawls all the transactions of 282
true positives to track the ether flowing in and out the hon-
eypots. Perez and Livshits [35] evaluate all the vulnerable
contracts reported by prior work and their transactions, and
then conclude that only a small number of contracts are ac-
tually attacked. We also have a similar observation as Perez
and Livshits in terms of attacked contracts.

As a general comparison, our measurement study is the first
work to analyze all the transactions during a certain period
and study the vulnerability patterns and attack trends. From
these attacks, we also evaluate the effectiveness of existing
defenses in terms of prevented and successful transactions.
Our work sheds a light on future research directions: We
believe that researchers should focus on new vulnerability
types and old vulnerabilities with new patterns.

7.3 Safer Smart Contracts or Framework

Some researchers are working on the design of a safer smart
contract or framework. For example, Breindenbach et al. [22]
propose a so-called Hydra Framework, which models and
administers bug bounties to incentivize bug disclosure. For
another example, Delmolino et al. [26] present their own ex-
perience in building safer smart contracts at the University of
Maryland. As a comparison, those works are orthogonal to our
measurement study, because they are suggesting a new way
to develop contracts, while we are studying existing attacks
and defenses.

8 Conclusion
In this paper, we perform the first comprehensive measure-
ment study of transactions on the Ethereum blockchain by
analyzing real-world attacks and defenses. Our results reveal
and quantify the gap between what has been reported by prior

2806 29th USENIX Security Symposium USENIX Association

work and what has been adopted by real-world adversaries.
Particularly, we have identified 344 previously-unknown vul-
nerable contracts with 100,641 adversarial transactions.

When analyzing adversarial transactions, we also study
how developers adopt defenses against real-world attacks.
We have identified six classes of defenses, which prevented
1,276 adversarial transactions in total. We find that these
defenses are evaded as well largely due to incomplete de-
ployments. The back-and-forth attacks and defenses show an
ever-evolving game that exists in the Ethereum ecosystem.

We are making two suggestions for smart contract related
researches. First, we suggest keeping improving prior pro-
gram analysis to support inter-contract dataflow and increase
existing code coverage. Second, we suggest keeping an eye
on newly-emerged attack strategies as they can easily draw
much attention to adversaries.

Acknowledgement
We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper, and the authors of related researches [23,28–31,39–41]
for their datasets that help us evaluate our tool. This work was
supported in part by the National Natural Science Founda-
tion of China (U1636204, U1736208, U1836210, U1836213,
61972099, 61602121, 61602123), Natural Science Founda-
tion of Shanghai (19ZR1404800). Min Yang is the corre-
sponding author, and a faculty of Shanghai Institute of Intelli-
gent Electronics & Systems, Shanghai Institute for Advanced
Communication and Data Science, and Engineering Research
Center of Cyber Security Auditing and Monitoring, Ministry
of Education, China. This work was supported in part by Na-
tional Science Foundation (NSF) grants CNS-18-54000 and
CNS-18-54001. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of NSF.

References
[1] TheDarkDAO contract. https://etherscan.io/address/

0x304a554a310C7e546dfe434669C62820b7D83490, 2016.

[2] WithdrawDAO contract. https://etherscan.io/address/
0xbf4ed7b27f1d666546e30d74d50d173d20bca754, 2016.

[3] ChooseWHGReturnAddress contract.
https://etherscan.io/address/
0x3abe5285ED57c8b028D62D30c456cA9eb3E74105, 2017.

[4] Ethereum known attacks. https://consensys.github.
io/smart-contract-best-practices/known_attacks/,
2017.

[5] Manticore. https://github.com/trailofbits/
manticore, 2017.

[6] Parity wallet multi-sig library vulnerability. https://www.
parity.io/security-alert-2/, 2017.

[7] Analyzing the first token harvest event in blockchain. https:
//paper.seebug.org/646/, 2018.

[8] FoMo3Dlong contract. https://etherscan.io/address/
0xa62142888aba8370742be823c1782d17a0389da1, 2018.

[9] Mythril. https://github.com/ConsenSys/mythril, 2018.

[10] A redundant SafeMath implementation to make your con-
tract unsafe! https://blog.peckshield.com/2018/08/
14/unsafemath/, 2018.

[11] CoinGecko. https://www.coingecko.com, 2019.

[12] Ethereum in bigquery: a public dataset for smart contract
analytics. https://cloud.google.com/blog/products/
data-analytics/ethereum-bigquery-public-dataset-
smart-contract-analytics, 2019.

[13] Etherscan. https://etherscan.io, 2019.

[14] Fleiss’ kappa. https://en.wikipedia.org/wiki/Fleiss%
27_kappa, 2019.

[15] Fuzzing. https://en.wikipedia.org/wiki/Fuzzing,
2019.

[16] HoneyBadger dataset. https://github.com/
christoftorres/HoneyBadger/tree/master/results/
evaluation, 2019.

[17] LLVM IR. https://llvm.org/docs/LangRef.html#
introduction, 2019.

[18] OpenZeppelin contracts is a library for secure smart con-
tract development. https://github.com/OpenZeppelin/
openzeppelin-contracts, 2019.

[19] Replay attack. https://en.wikipedia.org/wiki/
Replay_attack, 2019.

[20] Solidity programming language: Error handling.
https://solidity.readthedocs.io/en/v0.5.11/
control-structures.html?highlight=require#error-
handling-assert-require-revert-and-exceptions,
2019.

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi,
Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, et al. Formal verification of smart contracts: Short
paper. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, 2016.

[22] Lorenz Breindenbach, Phil Daian, Florian Tramèr, and Ari
Juels. Enter the hydra: Towards principled bug bounties
and exploit-resistant smart contracts. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1335–
1352, 2018.

[23] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois
Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz.
Vandal: A scalable security analysis framework for smart con-
tracts. arXiv preprint arXiv:1809.03981, 2018.

[24] Vitalik Buterin. DAO fork. https://blog.ethereum.org/
2016/07/20/hard-fork-completed/, 2016.

[25] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. In 2017
IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017.

USENIX Association 29th USENIX Security Symposium 2807

https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://etherscan.io/address/0x3abe5285ED57c8b028D62D30c456cA9eb3E74105
https://etherscan.io/address/0x3abe5285ED57c8b028D62D30c456cA9eb3E74105
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://www.parity.io/security-alert-2/
https://www.parity.io/security-alert-2/
https://paper.seebug.org/646/
https://paper.seebug.org/646/
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://github.com/ConsenSys/mythril
https://blog.peckshield.com/2018/08/14/unsafemath/
https://blog.peckshield.com/2018/08/14/unsafemath/
https://www.coingecko.com
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://etherscan.io
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Fuzzing
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://llvm.org/docs/LangRef.html#introduction
https://llvm.org/docs/LangRef.html#introduction
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Replay_attack
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/

[26] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew
Miller, and Elaine Shi. Step by step towards creating a safe
smart contract: Lessons and insights from a cryptocurrency
lab. In International Conference on Financial Cryptography
and Data Security, pages 79–94. Springer, 2016.

[27] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent,
Bernhard Scholz, and Yannis Smaragdakis. Madmax:
Surviving out-of-gas conditions in ethereum smart con-
tracts. The ACM SIGPLAN conference on Systems,
Programming, Languages and Applications: Software for
Humanity (OOPSLA’18), 2018.

[28] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing
smart contracts for vulnerability detection. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE’18), 2018.

[29] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
Zeus: Analyzing safety of smart contracts. In 25th
Annual Network and Distributed System Security Symposium
(NDSS’18), 2018.

[30] Johannes Krupp and Christian Rossow. teether: Gnawing at
ethereum to automatically exploit smart contracts. In 27th
USENIX Security Symposium (USENIX Security’18), 2018.

[31] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS’16), 2016.

[32] Bernhard Mueller. Smashing ethereum smart contracts for
fun and real profit. In 9th Annual HITB Security Conference
(HITBSecConf), 2018.

[33] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal con-
tracts at scale. In Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[34] Santiago Palladino. The parity wallet hack explained.
https://blog.openzeppelin.com/on-the-parity-
wallet-multisig-hack-405a8c12e8f7/, 2017.

[35] Daniel Perez and Benjamin Livshits. Smart contract vulnera-
bilities: Does anyone care? arXiv preprint arXiv:1902.06710,
2019.

[36] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas
Davi. Sereum: Protecting existing smart contracts against
re-entrancy attacks. In 26th Annual Network and Distributed
System Security Symposium (NDSS’19), 2019.

[37] Alex Sherbachev. Hacking the hackers: Honeypots on
ethereum network. https://hackernoon.com/hacking-
the-hackers-honeypots-on-ethereum-network-
5baa35a13577, 2018.

[38] Alex Sherbuck. Dissecting an ethereum honeypot.
https://medium.com/coinmonks/dissecting-an-
ethereum-honey-pot-7102d7def5e0, 2018.

[39] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy,
Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexan-
drov. Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain
(WETSEB’18), 2018.

[40] Christof Ferreira Torres and Mathis Steichen. The art of the
scam: Demystifying honeypots in ethereum smart contracts. In
28th USENIX Security Symposium (USENIX Security’19),
2019.

[41] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur
Gervais, Florian Buenzli, and Martin Vechev. Securify: Prac-
tical security analysis of smart contracts. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS’18), 2018.

[42] Peter Vessenes. Deconstructing TheDAO attack: A brief code
tour. https://vessenes.com/deconstructing-thedao-
attack-a-brief-code-tour/, 2016.

[43] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, An-
drew Miller, and Michael Bailey. Erays: reverse engineering
ethereum’s opaque smart contracts. In 27th USENIX Security
Symposium (USENIX Security’18), 2018.

2808 29th USENIX Security Symposium USENIX Association

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://medium.com/coinmonks/dissecting-an- ethereum-honey-pot-7102d7def5e0
https://medium.com/coinmonks/dissecting-an- ethereum-honey-pot-7102d7def5e0
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/

A Zero-day Vulnerable Contract Examples
In the appendix, we describe several example zero-day vul-
nerable contracts in each attack category.

A.1 Zero-day Reentrancy Contract

1 contract InstaDice{
2 function payoutPreviousRoll()
3 public
4 returns (bool _success) {
5 ...
6 _finalizePreviousRoll(_user , _stats);
7 stats.totalWon = _stats.totalWon;
8 ...
9 }

10 function _finalizePreviousRoll(User memory
_user , Stats memory _stats)

11 private {
12 ...
13 require(msg.sender.call.value(_user.

r_payout)());
14 _stats.totalWon += _user.r_payout;
15 ...
16 }
17 }

Figure 9: A zero-day reentrancy contract.

We show the source code of one zero-day reentrancy in Fig-
ure 9. The vulnerability is located at Line 13, which has to be
triggered through a cross-function call from public interface
payoutPreviousRoll to private _finalizePreviousRoll.
Therefore, neither Oyente and ZEUS can detect this cross-
function vulnerability. At the same time, the state update is
via a membership variable of the function parameter _stats
at Line 14. Therefore, Securify and Mythril cannot detect the
vulnerability.

A.2 Zero-day Integer Overflow Contract

We show the source code of one zero-day integer overflow
in Figure 10. The vulnerability is located at Line 6. The con-
tract adopts a vulnerable multiplication operation at Line 6,
regardless the deployments of Sa f eMath functions in Line 10
and Line 12. Mythril and ZEUS fail to find the vulnerabil-
ity because their analysis cannot reach the batchTransfer
function.

A.3 Zero-day Honeypot Contract

Figure 11 shows a new class of honeypots which attract
users to deposit ethers and then refund them. The contract only
leaves a one-minute time window for withdrawing, which is
hard to satisfy due to the inaccurate timestamp determined by
miners. We observed that the contract owner withdrew all the
ethers at 7:50 in October, 2011.

B A List of Function Signatures
In this section, we list all the function signatures used by our
result analysis of identifying token transfers in Table 9.

1 contract PausableToken is StandardToken ,
Pausable {

2 function batchTransfer(address[]
_receivers , uint256 _value)

3 public whenNotPaused
4 returns (bool) {
5 uint cnt = _receivers.length;
6 uint256 amount = uint256(cnt) * _value

;
7 require(cnt > 0 && cnt <= 20);
8 require(_value > 0 && balances[msg.

sender] >= amount);
9

10 balances[msg.sender] = balances[msg.
sender].sub(amount);

11 for (uint i = 0; i < cnt; i++) {
12 balances[_receivers[i]] = balances

[_receivers[i]].add(_value);
13 Transfer(msg.sender , _receivers[i

], _value);
14 }
15 return true;
16 }
17 }

Figure 10: A zero-day integer overflow contract.

1 contract Multiple3x is Ownable{
2 uint public refundTime = 1507719600; //

GMT: 11 October 2017, 11:00
3 uint public ownerTime = (refundTime + 1

minutes);
4 function refund() payable {
5 require(now >= refundTime && now <

ownerTime);
6 ...
7 }
8 function refundOwner() {
9 require(now >= ownerTime);

10 if(owner.send(this.balance)){
11 suicide(owner);
12 }
13 }
14 }

Figure 11: A zero-day honeypot contract.

Table 9: Sensitive functions related to each result type.

Result Type Sensitive Function Signature

token_transfer

transfer(address,uint256) 0xa9059cbb
transferFrom(address,address,uint256) 0x23b872dd
transferMulti(address[],uint256[]) 0x35bce6e4
transferProxy(address,address,uint256, 0xeb502d45uint256,uint8,bytes32,bytes32)
batchTransfer(address[],uint256) 0x83f12fec
batchTransfers(address[],uint256[]) 0x3badca25
multiTransfer(address[],uint256[] 0x1e89d545

owner_change

setOwner(address) 0x13af4035
initWallet(address[],uint256,uint256) 0xe46dcfeb
transferOwnership(address) 0xf2fde38b
changeOwner(address) 0xa6f9dae1
addOwner(address) 0x7065cb48

USENIX Association 29th USENIX Security Symposium 2809

	Introduction
	Overview
	A Running Example
	Threat Model

	Methodology
	Measurement Workflow
	Preparation Phase
	Action Tree and Result Graph
	Adversarial Transaction Signature
	Signature Library

	Attack Analysis Phase
	Action Clause Matching
	Result Clause Matching

	Defense Analysis Phase
	Evasion Analysis Phase

	Implementation and Manual Analysis
	Implementation and Preliminary Results
	Manual Analysis
	Methodology and Metrics
	Manual Filtering of False Positives
	Manual Estimation of False Negatives

	Results
	Real-world Adversarial Transactions
	Well-known Attack Incidents
	Attacks against Other Vulnerable Contracts

	Real-world Defenses against Adversarial Transactions and Evasions against Defenses

	Observations and Advices
	Observeations
	Advices

	Related Work
	Smart Contract Vulnerability Detection
	Transactional Analysis
	Safer Smart Contracts or Framework

	Conclusion
	Zero-day Vulnerable Contract Examples
	Zero-day Reentrancy Contract
	Zero-day Integer Overflow Contract
	Zero-day Honeypot Contract

	A List of Function Signatures

