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ABSTRACT
Friend recommendation is a critical task in social networks. In this

paper, we propose a Bayesian Personalized Ranking Deep Neural

Network (BayDNN) model for friend recommendation in social

networks. BayDNN �rst extracts latent structural pa�erns from

the input network data and then use the Bayesian ranking to make

friend recommendations. With BayDNN we achieve signi�cant

performance improvement on two public datasets: Epinions and

Slashdot. For example, on Epinions dataset, BayDNN signi�cantly

outperforms the state-of-the-art algorithms, with a 5% improvement

on NDCG over the best baseline.

�e advantages of the proposed BayDNN mainly come from a

novel Bayesian personalized ranking (BPR) idea, which precisely

captures the users’ personal bias based on the extracted deep fea-

tures, and its underlying convolutional neural network (CNN),

which o�ers a mechanism to extract latent deep structural fea-

ture representations of the complicated network data. To get good

parameter estimation for the neural network, we present a �ne-

tuned pre-training strategy for the proposed BayDNN model based

on Poisson and Bernoulli probabilistic models.

CCS CONCEPTS
•Information systems→ Recommender systems;

KEYWORDS
Bayesian Personalized Ranking Deep Neural Network; Probabilistic

Model; Pre-training Strategy

1 INTRODUCTION
Recently, online social networks (OSN) such as Facebook, Twi�er

and Weibo have been growing exponentially. People from all over

the world get connected to each other online, making friends with

those sharing similar interest [1]. As the cornerstone of social

networks, friendship and its formation has a�racted tremendous

a�ention from both academia and industry [20, 27]. For example,
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Granove�er categorized friendship into strong and weak, and found

that novel information �ows to individuals through weak ties rather

than strong ties [9]. In online social networks, one phenomenon is

that the leading reason for users to create new friendships is due to

recommendation [28]. �erefore, friend recommendation becomes

an essential task of social networks.

In this paper, our goal is to design a high-accuracy method for

friend recommendation in online social networks. Di�erent from

previous works [11, 44] that rely on speci�c context information,

we aim to design a method that is general enough to be applied to

di�erent social networks. We propose a deep neural network for

friend recommendation using only network structure information.

Previous work on friend recommendation. From the algorith-

mic perspective, existing methodologies for the friend recommenda-

tion problem roughly fall into three categories: classi�cation, ��ing,

and ranking [10, 22]. �e classi�cation method treats friendship

between users as a binary classi�cation problem, and trains a clas-

si�er to predict the likelihood of a friendship to be created between

users based on pre-de�ned features. �e ��ing method transforms

the friendship between users into a real-valued rating matrix, and

utilizes collaborative �ltering approaches such as matrix factoriza-

tion to predict the probabilities of unknown friendships. Taking

into account the common imbalance issue in most OSN [13], i.e.,

the amount of friendship is usually much less than that of non-

friendships, which would lead the classi�cation or ��ing methods

biased towards non-friendship, the ranking method has been pro-

posed. Regarding friend recommendation as a learning to rank task

— i.e., for each user, by ranking the probability of friendship for the

users connected to it larger than that of users not connected to it —

the ranking method has been proved to be e�ective combating the

imbalance issue. Among them, the Bayesian personalized ranking

(BPR) model [18, 30, 34] de�ned Bayesian pairwise ranking relation

between users, i.e., the friendship probability of observed friends

should be larger than the unobserved users pairs, was validated to

achieve quite good performance.

Previouswork ondeepneural networks (DNN).Recently, deep
neural networks have achieved pervasively excellent performance

in various �elds including image classi�cation and phrase repre-

sentations [4, 17]. Compared to traditional methods such as kernel

machines [42] or matrix factorization [16] with shallow architec-

ture or limited levels of feature extraction, deep neural networks

like CNN with properly designed structure and careful parameter
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optimization achieve superior advantages. However, till now few

deep learning study has been conducted to address the task of friend

recommendation.

To achieve high-accuracy recommendations, one straightfor-

ward idea is to apply deep neural network (DNN) to friend recom-

mendation. However, the advantage of DNN is to learn a be�er

feature representation, but it fails to consider the essential imbal-

ance issue in friend recommendation. While a few e�orts have

been made using BPR (Bayesian Personalized Ranking) or DNN

(Deep Neural Network) [41] for friend recommendation, no work

has been done combining the strength of these two ideas.

Our solution and contributions. In this paper, we propose a deep
Bayesian Personalized Ranking Deep Neural Network (BayDNN) to

combine the advantage of BPR (Bayesian Personalized Ranking) and

DNN (Deep Neural Network). �e proposed BayDNN seamlessly

combines DNN and Bayesian ranking, and integrates CNN at the

stage of feature representation learning, which not only reduces the

number of parameters compared to traditional full connect neural

network, but also improves the e�ectiveness on feature mapping.

�e proposed BayDNN model has several unique advantages

compared with the previous methods. First, the model uses con-

volutional neural network (CNN) to extract latent deep structural

feature representations of the complicated network data. Second,

it uses a novel Bayesian personalized ranking learning algorithm

to be�er capture users’ personal bias based on the extracted deep

features. �ird, to avoid poor parameter estimation, we design a

�ne-tuned pre-training strategy for the proposed BayDNN model

based on Poisson and Bernoulli probabilistic models. Moreover, to

enhance the BPR, we group the friendship between users into three

sets, positive, negative, and unknown. And then, during the learning
process, we enforce the positive friendship to be ranked before the

unknow/negative ones, and the unknown friendship to be ranked

before the negative ones.
We conduct experiments on multiple real datasets. �e results

show that BayDNN not only extracts be�er feature presentation,

which is di�erent from classical or neighbor based methods, but

also performs well on large-scale datasets in friend recommending

in OSN. In terms of accuracy performance it outperforms the best

baseline and achieves 5% improvement on NDCG. In terms of time

cost for the model training, with the proposed pre-training strategy

the number of convergence epoches is largely reduced by 92.5%.

Organization. �e rest of the paper is organized as following.

We brie�y review related work in Section 2. In Section 3 we pro-

pose our deep Bayesian Personalized Ranking Deep Neural Net-

work (BayDNN) model and specify our pre-training strategies for

BayDNN. In Section 4 we design several experiments to validate

our model and conclude in Section 5.

2 RELATEDWORK
We review existingmethodologies for friend recommendation, high-

lighting the most relevant ones and explaining how our work distin-

guishes from them. �en, we brie�y summarize recent development

on deep neural networks.

Friend Recommendation. At the high level, methodologies deal-

ing with friend recommendation can be grouped into three cate-

gories [22]: classi�cation, ��ing and ranking. �e classi�cation

methods are based on extracted features, e.g., features between two

nodes like path-based metric Katz [14] or neighbor-based metric

Adamic/Adar [23]. By regarding the friendship status between two

users as a binary classi�cation task, they train classi�ers such as

SVM [8], logistic regression [29], and factor graph [40] to predict the

friendship values between users. �e ��ing methods represent the

friendship between users bu real values and try to approximate the

values for observed friendship as close as they can, e.g., [12, 25] used

matrix factorization to predict the value of unknown friendship.

Considering that the value of friendship probabiliy is non-negative,

Non-negative Matrix Factorization (NMF) was introduced by [19]

constraining that two factorized matrix are non-negative, which

showed be�er performance in non-negative data [3] compared to

MF. However the classi�cation and ��ing methods fail to deal with

the severe data imbalance issue due to the sparseness of OSN data,

i.e., the amount of observed friendship is much smaller than the

unobserved ones [26]. �is leads to the models biased towards

making low friendship probability[31]. Hence ranking methods

that regard this problem as a learning to rank task are proposed.

For each user, by predicting the likelihood of friendship between

friends larger than non-friends, ranking methods are proved to

be e�ective combating the imbalance issue [18, 30, 34]. Widely

used in item recommendation tasks, one popular Bayesian person-

alized ranking (BPR) [30, 34] model was integrated with matrix

factorization [18], called Bayesian Personalized Ranking Matrix

Factorization (BPRMF). �ey de�ned a Bayesian pairwise ranking

relation, i.e., observed data to be rated before unobserved data by

user-item linkage probability, which is calculated by matrix fac-

torization. We are inspired by this idea and apply the BPR idea to

friendship network, by combining it with a DNN model rather than

a shallow MF model.

Deep Neural Network. Recently, deep neural networks (DNN)

have archived signi�cant success in many machine learning and

data mining tasks, e.g., image labeling and voice recognizing [38].

Bengio et al. [2] pointed out that the shallow architecture of kernel

machines [42] and matrix factorization [16] restricts their learning

performance; meanwhile DNN achieves superior performance with

properly designed structure and carefully chosen parameters. Espe-

cially in non-linear feature mapping, convolutional neural network

outperforms most models in image [5], text [36] and other �elds.

In existing literature, few studied have been conducted to apply

DNN methods to the friend recommendation task. In fact, there is

no straightforward way to do this. One reason is that there exists

no corresponding pairwise ranking model for neural networks. An-

other reason is that DNN usually needs proper pre-training strategy

to avoid poor parameter initialization, e.g., use pre-trained deep

neural network like VGG-Net to initialize parameters of model

[24, 32] However, it is unclear which pre-training strategy should

be used for DNN in friend recommendation. Wang et al. [41] tried to

use a four-layer neural network with a simple pre-training strategy

called Pairwise Input Neural Network (PINN) to do link prediction,

by training and predicting the probability of a link point-wisely.

However, it did not achieve signi�cant performance improvement.
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(a) Overview (b) BayDNN

Figure 1: Bayesian Personalized Ranking Deep Neural Network (BayDNN)

3 THE PROPOSED FRAMEWORK
In this section, we �rst introduce the pair-wise ranking task of

the friend recommendation problem. �en we propose the deep

Bayesian Personalized Ranking Deep Neural Network (BayDNN)

model and describe the pre-training strategies.

3.1 Preliminaries
A social network can be denoted as a graphG =< V ,E >, whereV is

a set of |V | = N users, and E ∈ {0, 1}N×N represents the undirected

friendship structure between users. Notation eui = E(u, i) = 1 de-

notes that users u ∈ V and i ∈ V are friends, while eui = E(u, i) = 0

denotes that the friendship between u and i is unobserved. In

practice, E is usually very sparse for two reasons: Dunbar�s num-
ber [6], which suggests that the number of one person’s stable social

relationships lies between 100 and 230, which is much smaller com-

pared to the whole network; and missing links, which means that

the observed relationships in an online social network usually only

represent a limited part of one’s real social circles [26].

We de�ne a friendship probability matrix R ∈ [0, 1]N×N , where

rui = R(u, i) = P(eui = 1) denotes the probability that a friendship

between user u and i is formed. In this way, for each user u, all
the other users can be grouped into two disjoint sets—i.e., a set

with positive friends Pu = {i |eui = 1} and the rest with unobserved
friends Uu = {i |eui = 0}. For the task of friend recommendation,

our idea is to construct a ranking model that is able to rank the

positive friends before the unobserved friends. Inspired by [37],

we further divide the unobserved friends Uu into two sets, the

unknown friendsMu and the high probably negative friends Nu ,
i.e.,Uu =Mu ∪ Nu . In this work we construct the set of negative
friends Nu by selecting the users that can not reach u through

6 people (i.e., within 6 hops in the social network). It has been

concluded that people can on average connect to another through

6 people [21], which means the probability for those people being

friends is quite low. Based on this division, e.g., for any other

users i and j, if i ∈ Pu and j ∈ Uu , or i ∈ Mu and j ∈ Nu , the
probability of friendship rui should be greater than ruj . To describe
this relation we de�ne a Partial Relation i >u j.

De�nition 1. i >u j: For a user u, and two other users i and j in
the social network, i has a higher probability of friendship with u
than j, i.e., rui > ruj , we say that i and j have a Partial Relation on

u.

Note that with this de�nition, partial relation on u has property

of transitivity, i.e., if i >u j and j >u k , we have i >u k .
Based on Pu ,Uu and Nu , in the social network there are two

kinds of partial relation on u. First is the partial relation between

Pu and Uu , i.e., {i >u j | i ∈ Pu , j ∈ Uu }. �en within Uu
(Uu = Mu ∪ Nu ), there is another partial relation betweenMu
and Nu , i.e., {i >u j | i ∈ Mu , j ∈ Nu }.�e set of all the partial

relations for u is depicted as Ru = {(i, j) | i >u j}.
In this way we formalize friend recommendation as a ranking

problem. Compared to other options such as classi�cation or rat-

ing problems that su�er from the imbalance problem, the ranking

formulation can more or less avoid it [18, 30, 34]. Our model aims

to maximize the ranking likelihood probability as follows:

max

∏
u ∈V

∏
(i, j)∈Ru

P(i >u j) (1)

3.2 Bayesian Personalized Ranking Deep
Neural Network (BayDNN)

We propose a novel strategy that embed BPR learning framework

in DNN to produce ranking result. Fig. 1(b) illustrates the architec-

ture of the proposed Bayesian Personalized Ranking Deep Neural

Network (BayDNN).

For user u and (i, j) BayDNN uses their relationship information

Eu ,Ei ,Ej = E(u, :),E(i, :),E(j, :) ∈ {0, 1}N as input. Speci�cally,

for feature mapping from input to hidden layer H , we design a

Convolutional Feature Mapping (CFM) structure. �e details of
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Figure 2: Convolutional Feature Mapping

Fig. 1(b)’s CFM part is given in Fig. 2. �e output layer aims to

produce the friendship probability rui = P(eui = 1) and ruj =
P(euj = 1) and Bayesian personalized ranking (BPR) layer predict

the probability of this partial relation, i.e., P(i >u j).

Convolutional Feature Mapping (CFM). We use convolutional

neural network (CNN) to extract latent structural pa�erns of the

input data. Speci�cally, in our problem we want to extract the non-

linear structural features from the relationship vector Eu for each

user u. �e convolution neural network (CNN) for feature mapping

has been widely used in image classi�cation, pa�ern recognition

and so on, and has been proved to be very e�cient and accurate

for feature mapping [5]. We use one-dimensional CNN to be the

convolution Feature Mapping layers in our model. Such a method

has been also applied to synthesize lexical n-gram information in

previous work such as [33] and has shown good performance. �e

design of the convolution feature mapping layer between the input

Eu and feature Hu is given by Alg. 1 and depicted in Fig. 2.

We de�ne a loop in CFM as a manipulation of one convolution

layer and another pooling layer in order, where the convolution

layer uses the output from last loop’s pooling layer and pass its

calculation result to the following pooling layer, as described in

Alg. 1. Here we initialize the CFM by regarding input Eu ∈ {0, 1}N
for every user u as pooling result from loop 0, and pass it on to

loop 1. A�erM loops we add another convolution layer upon CFM

to reduce vectors to real value and concatenate them as extracted

feature Hu . Speci�cally, for convolution layer in loop l , we have:

Clj = tanh(K l ∗ (sl−1j )
T + biasF l ) (2)

Here (sl−1j )
T
denotes the transpose of the vector sl−1j , which

is the embedding of the element j for all the output from loop

(l − 1)’s pooling layer Sl−1. In our model, we select an element

j and its nearby elements to form ®sj , as shown in Fig. 2. K l
and

biasF l are the convolution kernel and bias for loop i respectively.

And the tanh function outputs the result of convoluted feature Clj
for element j in loop l . �e most common choices of activation

functions are the following: sigmoid function σ (x), hyperbolic
tangent function tanh(x), and recti�ed linear function ReLU (x).
Considering that we want to learn non-linear and non-negative

features of the relationship information, we choose tanh function

for the activation function.

�e results from convolution layer are then passed to the next

pooling layer, which aggregates the convoluted feature for further

reduction. We de�ne the following pooling operation in loop l :

Sll = pool
l (clj ) (3)

where clj is the embedding of element j for all the output from

convolution layerCl in the same loop. Herepool l means the pooling

function for loop l . In the �rst loop it is max function and in the

following pooling layers they are averaдe function. We use this

technique to avoid the sparsity of relationship information vector

in �rst loop.

�e pooling layer SM outputs many short vectors a�erM loops,

and the output di�ers with varied size of datasets. �en CFM will

add a �nal convolution layer on it and convert these vectors to real

values. We concatenate them to form a new vector as the extracted

feature of CFM, de�ned as Fu for user u, where:

Fuj = σ (KM+1 ∗ (sMj )
T + biasFM+1) (4)

Here considering the input of CFM are non-negative, we use

σ (x) as activation function to output non-negative features.

Algorithm 1 CFM for Relationship Vector

Input: Link vector Eu for user u
Output: Extracted feature Fu for user u
1: function CFM Forward(Eu )
2: Let S0 = Eu , l = 1

3: for l ≤ M, l = l + 1
4: Calculate convolution result Cl from Sl−1 (Eq. 2)

5: Calculate pooling result Si from Cl (Eq. 3)

6: Calculate convolution result CM+1
from SM (Eq. 4)

7: return Fu = C
M+1
u

8: end function

Bayesian Personalized Ranking (BPR) Learning. �e rest part

of BayDNN is based on Feature LayerH , and we adopt the Bayesian

Personalized Ranking technique to produce friend recommenda-

tion via ranking learning. �e model is trained to maximize the

likelihood de�ned in Eq. 1, hence the loss function is:

L(θc ,θr ) = −
∑
u

∑
(i, j)∈Ru

P(i >u j) + λ1‖θc ‖2 + λ2‖θr ‖2 (5)

where θc = {K ,biasF }, the parameters for kernels and biases in

CNN layers, and θr = {w,biasH , b} are the parameters in the

rest part of BayDNN. �e rest structure of BayDNN and inference

method is de�ned as below.

Hidden layer: Regarding Fu , Fi , Fj as features of user u, i and j
the hidden layer embedding their vectors into Hu , Hi and Hj for

further calculation, e.g., for user u the hidden layer produces Hu by

Hu = ReLU (wFu + biasH ) (6)

Here we use ReLU function instead of non-linear function for

the consideration of convergence speed, which is simply de�ned
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as max(0,x). Parametersw and biasH are the weights and bias for

units respectively.

Output Layer: Using Hu ,Hi ,Hj as input, the following layer

produces the friendship probability of rui and ruj , e.g.,

rui = σ (bu + bi + HT
u Hi ) (7)

Here the activation function is the sigmoid function for the

reason that the probability of becoming friends r ∈ [0, 1]. It’s

worth mentioning that, in the hidden layer all the users share the

same latent representation learning parameters {w,biasH } (Eq.6)
for model simplicity. However in the output layer, we allow each

useru to have its own bias parameter bu (Eq.7) to capture the user’s

personal preference in making friends, which has been shown to

be an important factor in recommendation problems. We validate

the value of modeling users’ personal bias in our experiments.

�e probability of a partial relation between rui and ruj is:

P(i >u j) =
rui − ruj

2

+ 0.5 (8)

Inference: To infer the parameters θc = {K ,biasF } and θr =
{w,biasH , b} for our BayDNNmodel through Eq.5, we employ back

propagation (BP) algorithm by using stochastic gradient descent

(SGD). However, since the objective function of Eq.1 is non-convex,

proper initialization of parameter is critical to the performance of

SGD-based method. In the following, we propose our pre-training

strategies to learn proper initial parameters θc and θr .
Prediction: Based on the output probability, the prediction for

a friend is easy, e.g., for user u and i by forwarding on the network

and fetch output layer rui as their probability being friends. �en

for di�erent users around u collect their probability and make a

ranking list, based on the list the system could recommend potential

friends to user u.

3.3 Pre-training Strategies
We design di�erent pre-training strategies for θc in the CFM layers

and θr in the rest layers, repectively, as depicted in Fig. 1(b). Firstly,

to obtain θc in the convolution layers in Fig. 2, inspired by the

idea of autoencoder, we expect the output of pre-training the same

as input a�er speci�c mathematical operation, i.e., E = FT F , and
propose a Poisson probability model to derive the parameter value.

Next, the pre-training is performed for parameters θr in ranking

layers. We view each eui as one observation sampled from its

corresponding Bernoulli probability distribution rui , and transform
the problem into a Bernoulli probability model.

Pre-training for θc . Based on the two considerations that, 1)the

output Fu of the convolution parts can be regarded as the latent

representation for each user u, and 2)the elements of H are non-

negative as the output of the sigmoid function, we can regardmatrix

F as the non-negative latent representation matrix for users with

linkage structure E. We use an approach proposed by [19] to derive

the latent non-negative matrix F based on E by minimizing the

following:

minKL
(
E ‖ FT F

)
(9)

Since the KL-divergence objective is hard to tackle, [3] proposed

a probabilistic-based solution by assuming that matrix E obeys a

Poisson distribution:

E ∼ Pϑ (FT F ) (10)

and [3] also proved that Eq. 9 is equivalent to maximize the likeli-

hood of E, which is de�ned as:

L(F ) = logp(E | F ) = log

∏
u,i
Pϑ (eui | FTu Fi )

=
∑
u

∑
i

(
eui log(FTu Fi ) − FTu Fi − log Γ(eui + 1)

) (11)

Substituting H de�ned by Eqs. 4 and 11 induces to

L(θc ) =
∑
u,i

(
eui log

∑
k

[
f (Eu )

]
k ·

[
f (Ei )

]
k

−
∑
k

[
f (Eu )

]
k ·

[
f (Ei )

]
k − log Γ(eui + 1)

)
− λ‖θc ‖2

(12)

Here by regarding CFM operations as a non-linear function with

input Eu and parameters θc , in Eq. 12, f (Eu ) represents the CFM’s

output vector given Eu . Since it’s hard to infer θc from Eq.12, we

propose to optimize Eq.12 by relaxing it to two sub-problems. �e

�rst sub-problem regards f (Eu ) simply as a variable rather than

a function during the optimization, and aims to seek the optimal

vectors F ∗u for every user u in Eq.12. �en given F∗ estimated in the

�rst sub-problem, the second sub-problem tries to estimate θc so
that function f (Eu ) given Eu will best approximate F ∗u . �ese two

sub-problems are iteratively solved in a relaxed EM-style. In the E

step, the value of f (Eu ) is optimized given the parameters θc ; in
the M step, the parameters θc are optimized given F∗. Speci�cally,
the EM style algorithm is as following:

E Step: Regarding Fu = f (Eu ) as a variable, Eq.12 simpli�es to:

max

F

∑
u,i

(
eui log

∑
k

FukFik −
∑
k

FukFik − log Γ(eui + 1)
)

(13)

For which [3] proposed an iterative optimization solution, in

each iteration, the elements of F are updated using :

F ∗uk = Fuk ·

∑
x
eux Fxk∑
y Fyk∑

x Fxk
, F ∗ik = Fik ·

∑
x

eix Fxk∑
y Fyk∑

x Fxk
(14)

M Step: Given the estimated F∗ from E step, we update the param-

eters θc = {v,biasF } by solving a least-square problem:

min

v,biasH

∑
u



F ∗u − f (Eu )


2 + λ‖θc ‖2 (15)

We use SGD to estimate θc . In each iteration of SGD, each θc is
updated as following:

∆θc = η ·
( [
F ∗u − f (Eu )

]
· ∂ f
∂θc
− λ · θc

)
(16)

where η is the learning rate and λ is the regularizing parameter.
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Algorithm 2 Pre-training Framework for BayDNN

Initialize: Random initial {θc ,θr } with Gaussian

Require: Hyper-parameters like learning rate λ,M
1: procedure Pre-Training(E)
2: repeat . Pre-training CFM with Poisson Model

3: Calculate Fu by CFM Forward(Eu ) for every u
4: for all u, i
5: Calculate optimized F ∗ui with Fui (Eq. 14)

6: Calculate square error ε = ‖F∗ − f(E)‖2 (Eq. 15)

7: Back propagation through CFM with error ε
8: until Convergence
9: Calculate Fu by CFM Forward(Eu ) for every u
10: repeat . Pre-training BayDNN with Bernoulli Model

11: for all u, i ∈ batch
12: Calculate rui from Fu and Fi (Eq. 6,7)

13: Back propagation through BayDNN

14: until Convergence
15: for Epoch in AdaDelta . Fine-tuning for Pre-training

16: Random select a partial relation u, i, j
17: Calculate rui ,ruj from Eu ,Ei ,Ej (Eq. 2,3,4,6,7)

18: Update BayDNN with AdaDelta

19: end procedure

Note that previous work [41] has a similar two-step pre-training

design for a di�erent application. However, for the �rst sub-

problem, it directly obtains the value for F∗ with a greedy algorithm.

�en the second step approximate the �xed value F∗ by adjusting

other parameters. �is may work well in neural network with

simple structure, however, in deep convolution neural network the

problem may rise that the �xed value F ∗u is not within the range of

f (Eu ) .

Pre-training for θr . Using the embedded feature Hu by the CFM

part as input, and rui , ruj as the output, we pre-train the rest struc-

ture to estimate parameters θr = {w,biasH , b} for user u. Regard-
ing the relationship between users Eui as the observation sampled

from the the Bernoulli probability distribution with parameter rui :

p(eui | rui ) = reuiui · (1 − rui )
1−eui , (17)

Its corresponding log-likelihood is de�ned as:

L =
∑
u,i

(
eui log rui + (1 − eui ) log(1 − rui )

)
(18)

To estimate θr , similarly we denote the non-linear functionд(Fu , Fi )
given embedded feature F through parameters θr , which equals

to output layer of our model as described in Eq. 7. To maximize

the log-likelihood of Bernoulli distribution, for user u we sample

positive users i where eui = 1 from set Pu and negative users j
where euj = 0 from setNu , where both sets are previously de�ned

in Section 3.1. In addition we just sample j from Nu instead ofUu
because our purpose of pre-training is to accelerate the training

of deep neural network. However if we sample j from Uu like

others traditional methods the time e�ciency will be low. Our

log-likelihood function is de�ned as:

L(θr ) =
∑
u

( ∑
i ∈Pu

logд(Fu , Fi )+
∑
j ∈Nu

log

[
1−д(Fu , Fj )

] )
−λ‖θr ‖2

(19)

We use SGD to conduct the optimization.

AdaDelta for Fine Tuning (Overall Tuning). A�er the pre-

training, we adjust all parameters in order to get the uniformed

output, we call it Fine Tuning for the pre-training. Fine tuning

is necessary when the pre-training of parameters are separately

processed. To give the whole parameters a be�er initial space we

adopt AdaDelta algorithm that scale the learning rate of SGD based

on the the history of both gradients and weights [43], which could

speed up the convergence of deep neural network at �rst periods

during the training process.

4 EXPERIMENTS
4.1 Experiment Settings
In this section, we compare the proposed BayDNNmodel with exist-

ing friend recommendation methods on two public social network

datasets. For all the methods, 10-fold cross validation is performed

on each dataset and the average results are reported.

Datasets. We use networks from two application scenarios with

di�erent user and relationship density to test the e�ectiveness and

generality of our approach.

Epinions1: �e dataset is extracted from the Epinions website,

containing 3640 users and 40752 friend relationship. Each user is

an online user of Epinions.

Slashdot2: �e dataset is extracted from the Slashdot Zoo online

website. It contains 3099 users and 33216 friend relationship.

Evaluation Metrics. We use AUC and NDCG to evaluate the

recommendation performance of the di�erent comparison methods.

AUC: Area Under the relative operating Characteristic (AUC)

[15] is originally de�ned to evaluate the ranking performance for

two class problem, which Relative Operating Characteristic (ROC)

represents the comparison of two operating characteristics TPR and

FPR as the classi�cation threshold criterion changes. �eAUC value

ranges from 0.5 to 1 and high value indicates good performance.

To evaluate the recommendation performance, we use the AUC

between P andU to measure the ability the model rank P before

the rest.

NDCG: Normalized Discounted Cumulative Gain (NDCG) is the

ratio of DCG to the Ideal DCG, where the Ideal DCG for user u
means, its positive friends P are always ranked before the rest. �e

higher NDCG value indicates be�er learning performance. Com-

monly NDCG@n which calculates the NDCG result over the top

ranked n items are used in recommendation tasks. In our experi-

ments, we calculate NDCG@5 for each user and average them as a

metric. Meanwhile we also try di�erent n for detailed estimation.

Precision-Recall: We also plot the precision-recall curves for

each comparison method. First we randomly sampled test negative

labels from missing links three times the size of positive labels in

1
h�p://epinions.com/

2
h�ps://slashdot.org/
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test set. �en calculate di�erent Precision@n and Recall@n by

regarding �rst n users in the recommending list as positive labels

and draw them on the �gures to do further analysis.

Comparison Methods. We compare our BayDNN model with

several state-of-the-art methods for friend recommendation, in-

cluding two popular graph feature based methods, three matrix

factorization based methods and one neural network based method.

Katz [14]: It is a shortest path distance based metric for evalu-

ating the similarity between two nodes in graph. Although Katz

is a variant of shortest path distance, it generally works be�er on

link prediction for this metric extracts more detailed path based fea-

tures. Based on these features between two users a proper trained

classi�er will judge whether there exists a link between them, as

described by [29] logistic regression performed be�er in this situa-

tion than other classi�ers like SVM. Hence we adopted the logistic

regression based on metric Katz between every two users.

Adamic/Adar [1]: �is is a metric for quantifying the similarity

between two nodes in an web pages network based on common

neighbors. Regarding common neighbors as features, [23] used this

metric to do link prediction in online social networks. Experiments

showed that this algorithm not only performed well on link predic-

tion, but also it could extracted precise topology information of the

graph. Here we also adopted the logistic regression as Katz.

Matrix Factorization (MF) [25]: Matrix Factorization is a la-

tent factor model, widely used for rating prediction [16, 35]. Menon

and Elkan et al. [25] proposed to use MF for link prediction prob-

lem by regarding positive links as 1 and the others as 0, which

outperformed most baselines.

Non-negative Matrix Factorization (NMF) [19]: It is a non-
negative version of matrix factorization, introduced by [19] with

constraining that two factorized matrix are non-negative.

Pairwise Input Neural Network (PINN) [41]: It is a four-

layer arti�cial neural network with simple pre-training strategy for

link prediction, which regarded two nodes’ link vector as input and

output the probability that there exists a link between them.

Bayesian Personalized Ranking Matrix Factorization
(BPRMF) [37]: It is a matrix factorization based bayesian model

with ranking strategy that aims at maximizing the probability for all

the partial relationship in dataset [34], which has been recognized

as an e�ective ranking method for friend recommendation.

For our BayDNN method, we use Gaussian random variables

to intialize the weight parameters in each layer and validate our

model with dropout [39]. �e batch size for BayDNN varies from

20 to 50 depending on the size of datasets, speci�cally, for Epinions

we choose 40 as batch size and 30 for Slashdot. �e experiments

are conducted on a machine with one GPU (NVIDIA GTX-1080)

and one CPU (INTEL Xeon E5-2620).

4.2 Recommendation Performances
In Table 1, the AUC and NDCG@5 results of the methods on the

two datasets are demonstrated. In Fig. 3, the precision-recall curves

and NDCG@n (with n rangeing from 3 to 10) results are ploted.

From the results, we can see that our BayDNN outperforms greatly

over the baselines on all the data sets and evaluation measures. On

Epinions and Slashdot, it outperformes the best baseline BPRMFN

Table 1: �eAUC andNDCG@5 results of comparisonmeth-
ods. For both measures, the larger, the better.

Methods

Results Epinions Slashdot

AUC NDCG@5 AUC NDCG@5

Katz 0.751 0.554 0.661 0.411

Adamic/Adar 0.858 0.680 0.891 0.542

MF 0.888 0.838 0.943 0.792

NMF 0.934 0.897 0.944 0.861

BPRMF 0.948 0.928 0.946 0.909

PINN 0.843 0.746 0.847 0.642

BayDNN 0.974 0.974 0.965 0.957

(b) Precision-Recall curves on Epinions (c) Precision-Recall curves on Slashdot

(d) NDCG@n on Epinions (e) NDCG@n on Slashdot

Figure 3: �e Precision-Recall curves and NDCG@n results
of di�erent methods on the two datasets.

respectively by 4.6% and 4.8% on NDCG@5, and much higher than

the other baseline models.

For the baselines, comparing the two graph based methods Katz

and Adamic/Adar, Adamic/Adar performs be�er than Katz as it

extracts more precise features by paying a�ention to features of

the neighbors, compared to Katz which only utilizes the features

of the path between two users. Whereas comparing the two graph

based methods with the other methods which learn feature repre-

sentations, We see that overall the feature learning methods—MF,

NMF, BPRMF, PINN and BayDNN clearly outperform the graph

methods. Matrix factorization based algorithms show a big advan-

tage over the graph-based algorithms that only uses the topology

Session 8A: Recommendation 3 CIKM’17, November 6-10, 2017, Singapore

1485



features. Taking into account the non-negative property of friend-

ship, NMF outperforms MF consistently over all data sets, which

veri�es the value of of considering the speci�c property of tasks

when designing the learning model.

What’s worth noting is that the deep neural network model

PINN underperforms most algorithms, which con�rms our previ-

ous intuition that straightforwardly applying DNN to friend rec-

ommendation without carefully designed network structure and

pre-training strategy is far from su�cient.

Our BayDNN model shows a remarkable advantage over these

baseline algorithms by combining the ranking idea of BPR and a

�nely designed DNN with our pre-training strategy. On Epinions

dataset, in terms of NDCG@5, it achieves a 29% improvement over

Adamic/Adar, 23% over PINN, 8% over NMF and 5% over BPRMF.

With n increasing the gaps become smaller. AUC also stated the

same result.

4.3 Discussions
In this section, we discuss the e�ects of several di�erent design

parts in our BayDNNmodel from the following aspects:1) How does

the CFM (Convolutional Feature Mapping) part a�ect the learning?

2) How does the user bias a�ect the learning? 3) How does the

pre-training a�ect the learning? 4) We further investigate the e�ect

of negative friendship on learning by changing the way negative

friendship are generated. To conduct the above three types of study,

we compare the proposed BayDNN with several di�erent variants

of BayDNN.

In order to further study the e�ects of our deep convolutional

neural network, we �rstly replace the CFM part of BayDNN with a

full connection neural network, to construct a method that com-

bines BPR and a common neural network, i.e.,BayNN, and compare

our BayDNNmethod with it. �e feature extraction part of BayNN

works similarly as PINN.

To study the e�ect of user bias modeling, we compare BayDNN
with BayDNNb , which shares the same network structure with

BayDNN except that, a uniform bias b for all the users is used in

BayDNNb rather than a unique bu for each user for in BayDNN.
To study the e�ect of pre-training on learning, we compare

BayDNN with two other models BayDNN (raw) and BayDNN
(SAE) with di�erent pre-training strategies. While BayDNN (raw)
does not use any pre-training strategies, BayDNN (SAE) uses the
stacked auto-encoder pre-training strategy proposed by [7]. It

applies autoencoding on each layer of the neural network.

In BayDNN, the negative friendship are recognized as those user

pairs who can’t reach each other within 6 hops. To study the e�ect

of negative friendship on learning, we �rst compare BayDNN with

BayDNNU which uses no negative friendship during learning. We

also change the way the negative friendship de�ned by varying the

number of hops in {0, 4, 6, 8} to select negative friends.

�e overall comparison results of the above 4 variants and

BayDNN are shown in Table 2 and Fig. 4. From Table 2 and Fig. 4,

our proposed BayDNN is optimal in all the three aspects. In the

following, we discuss in more details from the respective aspects.

How does the deep structure a�ect the learning? We �rstly

study the e�ect of deep structure on BayDNN comparing to PINN

with the same BPR learning strategy. �ough with the help of

Table 2: �e AUC and NDCG@5 results of self comparison
of BayDNN.

Methods

Results Epinions Slashdot

AUC NDCG@5 AUC NDCG@5

BayNN 0.855 0.765 0.852 0.658

BayDNNb 0.964 0.957 0.959 0.945

BayDNN (raw) 0.821 0.788 0.814 0.767

BayDNN (SAE) 0.912 0.869 0.897 0.845

BayDNNU 0.963 0.957 0.956 0.946

BayDNN 0.974 0.974 0.965 0.957

(b) �e Precision-Recall curves on Epinions (c) �e Precision-Recall curves on Slashdot

(d) �e NDCG@n on Epinions (e) �e NDCG@n on Slashdot

Figure 4: �e Precision-Recall curves and NDCG@n curves
for di�erent self-comparison models on the two datasets.

BPR BayNN improves a bit than PINN (1.5% in AUC), it is still

much worse than BayDNN (12% in AUC). We infer that the CFM

part in�uence a lot because the our convolution neural network

extract be�er latent feature on link information rather than shallow

architecture under the same learning strategy.

How does the user bias a�ect the learning? We then look into

the e�ect of bu , i.e., the personalized bias in Eq.7, by comparing

BayDNNwith BayDNNb . Results in Table 2 show that our BayDNN

with individual bias bu for each user outperforms BayDNNb with

one single bias for all users 1% on average. Here we study the

e�ects of the bias parameters by investigating the output value of

the output layer of BayDNN and BayDNNb . Fig. 5 depicts how the

user bias in�uence the prediction value rui that will later be used
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Figure 5: rui distribution with a uniform bias, i.e., rui =
σ (OT

uOi +b), against rui distribution with individual bias for
each user, i.e., rui = σ (OT

uOi + bu + bi ), on Epinions dataset.

for ranking in the model on the Epinions dataset. From the �gure

we can see that the se�ing of personalized bias makes the values

more distributed rather than within the range of a single sigmoid

function, which brings in more �exibility and be�er performance.

Figure 6: �e iterative AUC results during SGD optimiza-
tion for BayDNN with di�erent pre-training strategies on
the Epinions dataset.

How does pre-training a�ect learning? We further validate

our pre-training strategy by comparing the results with BayDNN

(raw) and BayDNN (SAE). Table 2 and Fig. 4 show that without

any pre-training strategy, the performance of BayDNN (raw) drops

signi�cantly. With a stacked auto-encoding pre-training BayDNN

(SAE) improves largely over BayDNN (raw). In terms of NDCG@5,

our strategy achieves a 15% improvement over BayDNN (raw) and

6% over BayDNN (SAE).

Moreover, we study the e�ects of pre-training strategies by inves-

tigating their step-wise performance during the SGD optimization.

Fig. 6 depicts the iterative AUC results of BayDNN, BayDNN (raw)

and BayDNN (SAE) during the SGD optimization process on the

Epinions dataset. We can see that the proper pre-training strategy

of BayDNN gives the model a very advantaged initialized space

and the model converges very quickly in about 15 epochs, whereas

BayDNN (raw) and BayDNN (SAE) start from a very low point

and take a long process to converge, i.e., about 200 epochs. To this

respect we can say that with our pre-training design, the time cost

of the model is largely reduced by 92.5%.

How does the negative friendship a�ect learning? �e result

comparing BayDNN with BayDNNU (i.e., noN) is given in Table 2

(a) Performances on Epinions by varying k

(b) Performances on Slashdot by varying k

Figure 7: Results changed by k in sampling for N.

and Fig. 4 again, which depicts that it brings in 1% improvement in

terms of NDCG. Here we further investigate how the introduction

of negative friendship N works and how it changes with di�er-

ent k options, i.e., how many unreachable hops should it be in N
selection.

Moreover, let k be the unreachable hop number we set, Fig. 7

depicts the precision results in the two datasets, respectively, with

k = 0 (randomly select), k = 4, 6, 8 (unreachable by 4, 6, 8 hops).

�e results are consistent with the theory proposed by [21], i.e., as

the number increases k = 6 reaches the best value of performance.

�e AUC and NDCG performance value with k = 6 are also given

in Table 2. An interesting �nding is that random selection (k = 0)

is worse than no selection, which indicates that random selection

brings in noise data (examples that do not actually belong to N)
that is big enough to harm the performance.

Moreover, we see how it impact on the best performed baseline

method, BPRMF. �e results show that by introducing N it works

be�er than random selection and no N selection, too. �e �gures

show that BayDNN outperforms BPRNN in both situation (with or

without N).

5 CONCLUSIONS
In this paper, we study the problem of friend recommendation and

propose a novel BayDNN model by combining Bayesian Personal-

ized Ranking and Deep Neural Networks. In BayDNN , we use an

one-dimensional convolutional neural network (CNN) to extract

latent deep structural feature representations from the input net-

work data, and then use a Bayesian personalized ranking learning

to captures users’ preference based on the extracted deep features.
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BayDNN shows clearly superior performance to several state-of-

the-art methods for friend recommendations on two di�erent public

datasets. To avoid poor parameter estimation, we also present a

�ne-tuned pre-training strategy for BayDNN based on Poisson and

Bernoulli probabilistic models, respectively for di�erent layers.

As the general idea of using deep neural networks for friend

recommendation represents an interesting research direction, there

are many potential future directions of this work. First, it is inter-

esting to study incrementally learning the deep neural networks so

that we can involve online user feedback into the learning process.

Second, another potential is to infer the �ned category (e.g., family,

friend, and colleague) of social relationships [40]. Last, it would

be interesting to connect the study with social theories to further

understand how the topological structure of online social networks

is formed.
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