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Abstract—Recently, a new paradigm of building general-
purpose language models (e.g., Google’s Bert and OpenAI’s
GPT-2) in Natural Language Processing (NLP) for text feature
extraction, a standard procedure in NLP systems that converts
texts to vectors (i.e., embeddings) for downstream modeling, has
arisen and starts to find its application in various downstream
NLP tasks and real world systems (e.g., Google’s search engine
[6]). To obtain general-purpose text embeddings, these language
models have highly complicated architectures with millions of
learnable parameters and are usually pretrained on billions of
sentences before being utilized. As is widely recognized, such
a practice indeed improves the state-of-the-art performance of
many downstream NLP tasks.

However, the improved utility is not for free. We find the
text embeddings from general-purpose language models would
capture much sensitive information from the plain text. Once
being accessed by the adversary, the embeddings can be reverse-
engineered to disclose sensitive information of the victims for
further harassment. Although such a privacy risk can impose a
real threat to the future leverage of these promising NLP tools,
there are neither published attacks nor systematic evaluations by
far for the mainstream industry-level language models.

To bridge this gap, we present the first systematic study on the
privacy risks of 8 state-of-the-art language models with 4 diverse
case studies. By constructing 2 novel attack classes, our study
demonstrates the aforementioned privacy risks do exist and can
impose practical threats to the application of general-purpose
language models on sensitive data covering identity, genome,
healthcare and location. For example, we show the adversary
with nearly no prior knowledge can achieve about 75% accuracy
when inferring the precise disease site from Bert embeddings of
patients’ medical descriptions. As possible countermeasures, we
propose 4 different defenses (via rounding, differential privacy,
adversarial training and subspace projection) to obfuscate the
unprotected embeddings for mitigation purpose. With extensive
evaluations, we also provide a preliminary analysis on the utility-
privacy trade-off brought by each defense, which we hope may
foster future mitigation researches.

I. INTRODUCTION

With the advances of deep learning techniques in Natural

Language Processing (NLP), the last year has witnessed many

breakthroughs in building general-purpose language models
by industry leaders like Google, OpenAI and Facebook [16],

[17], [41], [44], [54], [55], [67], [76], which have been

widely used in various downstream NLP tasks such as text

classification and question answering [15] and start to find

its application in real-world systems such as Google’s search

engine [6], which is said to represent “the biggest leap forward

in the past five years, and one of the biggest leaps forward in

the history of Search” [6].

Unlike traditional statistical models or shallow neural net-

work models, general-purpose language models typically refer

to the family of Transformer-based pretrained giant language
models including Google’s Bert and OpenAI’s GPT-2, which

are composed of layers of Transformer blocks [72] with

millions of learnable parameters, and are usually pretrained on

billions of sentences before being released. According to the

official tutorials [2], users can apply these pretrained models

as text feature extractors for encoding sentences into dense

vectors, or called sentence embeddings, which can be further

used for various downstream tasks (e.g., text classification).

With the release of Bert, Google AI envisions the future of

general-purpose language models as, “anyone in the world can

train their own state-of-the-art question answering system (or

a variety of other models) in about 30 minutes on a single

Cloud TPU, or in a few hours using a single GPU” [4].

Despite the bright envision, for the first time, we observe

these general-purpose language models tend to capture much
sensitive information in the sentence embeddings, which leaves
the adversary a window for privacy breach. For example, in

a typical use case of these language models in intelligent

healthcare, a third-party organization issues a cooperation with

a hospital for developing a patient guide system, which auto-

matically assigns the patients to a proper department based on

the symptom descriptions. Due to the generality of Google’s

Bert [17], the organization only needs to request the hospital to

provide the embeddings of the patients’ symptom descriptions

as the essential information for building a high-utility system.

Due to the lack of understanding of the privacy properties

of the general-purpose language models, the hospital may

expect sharing the vector-form features would be much less

private than sharing the plain text, especially when they are

told the encoding rule itself is based on highly complicated

neural networks that are near to black-boxes. In fact, we do

observe with experiments in Appendix F that, even with a

standard decoder module in NLP, it is difficult to recover

any useful information from the embeddings. However, on

eight state-of-the-art language models including Bert and GPT-

2, we devise a lightweight yet effective attack pipeline and

strikingly find that given the unprotected sentence embeddings,
even an adversary with nearly zero domain knowledge can
infer domain-related sensitive information in the unknown
plain text with high accuracy. In the above medical example,

our observation strongly implies that the honest-but-curious

service provider as the adversary can easily infer the identity,

gender, birth date, disease type or even the precise disease

site regarding a particular victim, only if the target piece of

information appears in his/her original description.

Our Work. In this paper, we provide the first systematic study
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on the potential privacy risks of general-purpose language

models. Specifically, we want to answer the main research

question: is it possible for the adversary to infer user’s private
information in the unknown plain text, when the adversary
only has access to his/her submitted embeddings? If the

answer is affirmative, then the future applications of state-

of-the-art NLP tools in compelling learning paradigms like

collaborative or federated learning [36], [37], [46] can be

largely threatened and restricted, especially on privacy-critical

domains including healthcare, genomics and finance. Besides

the novelty in our major research object, our research question

also has its own specialness compared with most existing

works including membership inference attacks [63], property

inference attacks [23] and model inversion attacks [21], in

terms of the information source and the attack objective.

A more detailed comparison between our study and related

attacks can be found in Section II.

Although previous works in computer vision have shown

the possibility of reconstructing original images from their

pretrained embeddings via autoencoders [18] or generative

models [61], no similar attacks were reported in NLP before.
From our perspective, the discreteness of tokens and the in-

visibility of the vocabulary are two major technical challenges

that prevent the success of reconstruction attacks on text

embeddings. On one hand, the discreteness of tokens makes

the search over the space of all possible sentences highly

inefficient, mainly because the learning objective is no longer

differentiable as in the visual cases and therefore gradient-

based methods can hardly work [79]. On the other hand, as

language models are accessed as black boxes, the adversary

has no knowledge of the ground-truth vocabulary, without

which the adversary cannot convert the recovered word index

sequences into plain text [38]. Even if the adversary may

prepare one’s own vocabulary, it can be either too small to

contain some sensitive words in the unknown plain text or so

large that bring high computational complexity.

To address these aforementioned challenges, we propose to

reconstruct sensitive information from text embeddings via

inference. Taking inspirations from the observation that the

privacy-related information in text usually appears in small

segments, or is related with the occurrence of certain key-

words [62], we construct two different attack classes, namely

pattern reconstruction attacks and keyword inference attacks,

to demonstrate how sensitive information can be extracted

from the text embeddings. In pattern reconstruction attacks,

the raw text has fixed patterns (e.g., genome sequences) and

the adversary attempts to recover a specific segment of the

original sequences that contains sensitive information (e.g.,

disease-related gene expressions). In keyword inference attack,

the adversary wants to probe whether the unknown plain text

(e.g., medical descriptions) contains certain sensitive keyword

(e.g., disease site). Focusing on a small segment, the adversary

only needs to infer from a limited number of possibilities

for reconstruction purposes, which alleviates the optimization

difficulty caused by the discreteness of tokens. Meanwhile, the

adversary has no need to know the whole vocabulary if the

adversary only cares about the word he/she is interested in.

Extensive experiments on 8 state-of-the-art general-purpose

language models with 4 (identity-, genome-, medical-,

location-related) case studies showed, the adversary can pre-

cisely infer various levels of sensitive information of a target

user from his/her leaked embeddings. For pattern reconstruc-

tion, our attack achieves optimal and average accuracy respec-

tively of 98.2% and 62.4% when inferring the exact nucleotide

type at any specified positions from the GPT-2 embeddings

of 20-length genome sequences, without any auxiliary infor-

mation. For keyword inference, our attack achieves average

accuracy of 99.8% and 74.8% respectively, when inferring the

occurrence of 10 body-related keywords from the Bert em-

beddings of medical descriptions with and without a shadow

corpus. These results highly demonstrate that the aforemen-
tioned privacy risks do exist and can impose real threats
to the application of general-purpose language models on
sensitive data. Noticeably, all our attacks only need to access

the language model as a cloud service (i.e. ML-as-a-service)

and can be conducted with one PC device. With additional

ablation studies, we further discuss some architecture-related

and data-related factors which may influence the privacy risk

level of language models. Furthermore, we also propose and

evaluate four possible countermeasures against the observed

threats, via quantization, differential privacy [20], adversarial

training [57] and subspace projection [14]. We hope our

preliminary mitigation study will shed light on future defense

researches and contribute to the design of secure general-

purpose language models.

In summary, we make the following contributions:

• We discover the potential privacy risks in general-purpose

language models by showing, a nearly-zero-knowledge ad-

versary with access to the text embeddings can disclose

much sensitive information in the unknown text.

• We design a general attack pipeline for exploiting user pri-

vacy in text embeddings and implement two practical attacks

with advanced deep learning techniques to demonstrate the

privacy risks.

• We present the first systematic evaluations on 8 state-of-

the-art general-purpose language models with 4 diverse case

studies to demonstrate the hidden privacy risks, with an in-

depth analysis on the factors that influence the privacy.

• We also provide preliminary studies on four possible coun-

termeasures and their utility-privacy trade-off, which we

hope may foster future defense studies.

II. RELATED WORKS

Privacy Attacks against ML. Model inversion attack was first

proposed by Fredrikson et al. on statistical models [22] and

later generalized to deep learning systems [21]. In terms of the

attack objective, Fredrikson et al’s attack on image classifiers

aims at recovering the prototypical image that represents a

specific class, while our attacks aim at recovering partially

or fully the plain text behind the embedding. In terms of the

information source, model inversion attack mainly relies on

the parameters of the model itself, while for our attacks, the
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information source is the sentence embedding produced from

the general-purpose language models.

Meanwhile, Fredrikson et al. [21], [22] also discussed the

model inversion attack in the sense that the attack inverts

sensitive information about the input from the model’s output.

To the best of our knowledge, their original attack was mainly

implemented for the decision tree model and is not directly

applicable to deep learning models. Later, some very recent

works have proposed finer-grained attacks which attempt to

recover the exact training images or texts from the predictions

[58], [77] or the gradients [47], [82] in an unknown mini-

batch during the training phase. However, two of them that

target on recovering text from gradients [47], [82] utilize

the explicit representation of word composition in bag-of-

words and cannot be applied to our adversarial setting which

reconstructs texts from the dense sentence embeddings from

general-purpose language models.

As a complement to model inversion attack, Shokri et al.

devised the first membership inference attack against machine

learning models [63], which aroused wide research interests

[50], [59], [66], [78] in the past few years. In terms of the

attack objective, membership inference attempts to disclose the

is-in relation between the sample and the real private training

set. In terms of the information source, the membership

inference attack relies on the probability vector associated

with the input sample. Different from membership inference,

another branch of works called property inference aims at

infering whether the training set has certain global property,

which was first studied by [10] on shallow models and later

extended by [23] to deep models.

Aside from privacy attacks on the datasets, some other

threats against the model privacy have also been studied, e.g.,

by demonstrating the possibility of stealing model parameters

[70], architectures [19], and hyper-parameters [73]. In a wider

picture of adversarial machine learning, there still remains

many open problems including adversarial example [27], data

poisoning [13], Byzantine workers [48] and fairness [29],

which are calling for future research efforts on building more

robust and reliable machine learning systems.

Privacy Attacks using ML. Besides, there are also plenty

of prior works using ML approaches to evaluating user pri-

vacy risks regarding, e.g., his/her biomedical and geological

profiles. On biomedical privacy, for example, Humbert et al.

[30], [31] leveraged graphical models to infer the genome of an

individual from parental relationships and expert knowledge,

which was recently extended to other types of biomedical data

by [12]. On location privacy, for example, Shokri et al. [64]

used Markov chain modeling to reconstruct the actual traces of

users from obfuscated location information, while some recent

works exploit side channels from social media like hashtags

for location inference using clustering [8] or random forests

[80].

III. PRELIMINARIES

A. Sentence Embedding

Given a vocabulary V that consists of |V| tokens, we call

a sequence x := (w1, . . . , wn) is a sentence of length n if

each token (or word) wi is in the vocabulary V . Following

the nomenclature of representation learning [11], we call a

mapping f from sentences to a real vector space R
d as a

feature extractor. For the sentence x, the vector z := f(x) is

called its embedding.

Prior to the proposal of general-purpose language models,

word embedding and sentence embedding as two traditional

NLP tasks have been widely studied, for which several ma-

ture algorithms exist. For word embedding, algorithms like

word2vec [49] encode the word to its vector representation that

can noticeably preserve the relative semantics between words,

e.g., the difference of the embeddings of the words queen and

woman was observed to be almost identical to that of king and

man [49]. For sentence embeddings, word-frequency-based

algorithms like TF-IDF [60] directly counts word statistics

of a sentence and thus the produced sentence embeddings

are explicit in word composition, which are not suitable for

privacy-critical scenarios [46]. Other learning-based sentence

embedding methods like doc2vec [42] borrow the idea of

word2vec and encode sentences to vectors that preserve the

relative semantics between the sentence and its composite

words in the training corpus. As a result, the produced sentence

embeddings from doc2vec are usually corpus-specific and are

mainly used for sentence clustering or paraphrase detection on

a given corpus [40], [42].

Recently, the boom of general-purpose language models

has largely reformed how we understand and use embed-

dings in the following aspects. On one hand, the boundary

between word embedding and sentence embedding are no

longer clear due to contextualized word embeddings [52], a

fundamental concept behind these general-purpose language

models. Intuitively, contextualized word embeddings suggest

the embedding of the same word can vary according to the

sentence where it occurs. For example, the contextualized

embedding of the word apple should be different in “I like
apple” and “I like Apple macbooks”. Consequently, most

general-purpose language models list sentence embedding as

one major use case instead of word embedding [2], [74]. On

the other hand, sentence embeddings from pretrained general-

purpose language models have better generality and can be

directly used as input to train downstream learning models.

For instance, with a simple linear layer for output, embeddings

from a pretrained Bert model can achieve state-of-the-art

performance on eleven NLP tasks [17].

B. General-Purpose Language Models for Sentence Embed-
ding

Roughly speaking, existing general-purpose language mod-

els are mainly variants of stacked recurrent Transformers,

which consist of millions of learnable parameters. Before

coming into use, general-purpose language models first need
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to be pretrained on extremely large corpus such as the English

Wikipedia. Typical pretraining tasks include masked language

modeling and next sentence prediction [17].

Fig. 1. General-purpose language models for sentence embedding and the
potential privacy risks. The red directed line illustrates the discovered privacy
risks: the adversary could reconstruct some sensitive information in the
unknown plain texts even when he/she only sees the embeddings from the
general-purpose language model.

To obtain the embedding of a given sentence x, the follow-

ing procedures are required [17]: (1) tokenization according

to a prepared vocabulary; (2) token embedding (i.e., the token

index is mapped to a corresponding vector with the aid

of a learnable look-up table); (3) propagation through the

Transformers along two dimensions. At the last layer, the

sentence is transformed to an n-length sequence of vectors in

R
d (i.e., hidden states); and (4) finally, a pooling operation is

performed on the hidden states to get the sentence embedding.

The pooling operation for general-purpose language models is

to take the last hidden state at the final layer as the embedding

of sentence x, because most general-purpose language models

by default add a special token (i.e, 〈CLS〉, which intuitively

means to classify) to the end of the input sentence during

the pretraining phase. As a result, to use the last hidden state

as the sentence embedding usually brings better utility [17],

[44]. Fig. 1 provides a schematic view on the aforementioned

procedures. Although intuitions on the described workflow

suggests that a certain level of context information should

be preserved in the last hidden state, there is little known to

our community that, to what granularity the original sentence

is preserved in the encoding, whether and how the resided

sensitive information can be decoded by potential attacks.

C. General-Purpose Language Models in the Wild

TABLE I
BASIC INFORMATION OF MAINSTREAM PRETRAINED LANGUAGE MODELS.
(* IMPLIES THE STATISTICS IS ESTIMATED ACCORDING TO THE ORIGINAL

PAPER.)

Name Proposed by Dimension d Pretraining Data Size

Bert [17] Google 1024 13GB
Transformer-XL [16] Google 1024 517MB*

XLNet [76] Google 768 76GB

GPT [54] OpenAI 768 4GB*
GPT-2 [55] OpenAI 768 40GB

RoBERTa [44] Facebook 768 160GB
XLM [41] Facebook 1024 10GB*

Ernie 2.0 [67] (abbr. ERNIE) Baidu 768 33GB*

As is discussed, training a general-purpose language model

from scratch can be highly expensive. As an alternative,

most of the state-of-the-art models have a pretrained version

published online for free access. In this paper, we study 8
mainstream language models developed by industry leaders

including Google, OpenAI, Facebook and Baidu. Table I lists

the basic information of these target models.

IV. GENERAL ATTACK PIPELINE

Although the state-of-the-art language models provide a

direct and effective way for obtaining general-purpose sen-

tence embeddings for various downstream tasks, we find their

improved utility is accompanied with hidden privacy risks. By

constructing two novel attack classes, we show an adversary is

able to reverse-engineer various levels of sensitive information

in the unknown plain text from the embeddings. In this section,

we first present some general statements of our attacks.

A. Attack Definition

Generally speaking, in both attacks the adversary wants

to infer some sensitive information of the sentence from the

accessed embeddings. Formally, we formulate the attack model

as A : z → s , where z is the embedding of a target sentence x
and s denotes certain type of sensitive information that can be

obtained from the plaintext with a publicly-known algorithm

P : x → s. For example, from the treatment description

“CT scan of blood vessel of head with contrast”, we can tell

the patient probably has sickness at his/her head. In practice,

the sensitive information s can be of various types, from a

small segment that contains sensitive information (i.e., P is an

operation that takes out a specified part of the whole sequence)

to a predicate on the plain text x. For example, in the above

head case, P maps any sentence x to {0, 1}: if the sentence

x has word head, then P(x) = 1; otherwise P(x) = 0. This

notion will be used in formulating our attack pipeline.

B. Threat Model

In general, we focus on the following threat model.

• Assumption 0. The adversary has access to a set of em-

beddings of plain text, which may contain the sensitive

information the adversary is interested in.

• Assumption 1. For simplicity only, we assume the adver-

sary knows which type of pretrained language models the

embeddings come from. Later in Section VIII, we show this
assumption can be easily removed with a proposed learning-
based fingerprinting algorithm.

• Assumption 2. The adversary has access to the pretrained

language model as an oracle, which takes a sentence as input

and outputs the corresponding embedding.

For each attack, we also impose different assumptions on the

adversary’s prior knowledge of the unknown plain text, which

are detailed in the corresponding parts.

C. Attack Pipeline

Our general attack pipeline is divided into four stages.

At the first stage, the adversary prepares an external corpus
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Dext := {xi}Ni=1 and uses the algorithm P to extract the

{P(xi)}Ni=1 as labels. It is worth to notice, as the external

corpus is basically generated with algorithms or crawled from

open domains like Yelp restaurant reviews, the extracted labels

usually contain no truly sensitive information. At the second

stage, the adversary queries the pretrained language model

with each sentence xi ∈ Dext and receives their embeddings

{zi}Ni=1. At the third stage, the adversary combines the embed-

dings with the extracted labels to train an attack model A. At

the final stage, the adversary uses the well-trained attack model

to infer sensitive information s from the target embedding z.

Fig. 2 provides an overview of our attack pipeline. In the next

parts, we provide a general introduction of each stage in the

pipeline.

Fig. 2. General attack pipeline.

Stage 1: Prepare External Corpus. The preparation of the

training set is accomplished in the first two stages. First, as the

attack model infers sensitive information in the unknown plain

text, a proper external corpus Dext := {xi}Ni=1 is therefore

essential to play the role of a probing set for successful

attacks. Based on different knowledge levels on the plain

text, we suggest the adversary can create the external corpus

(1) by generating algorithms or (2) from public corpora in

open domains. The details are provided in the corresponding

sections. After the external corpus is prepared, we apply the

algorithm P on each xi ∈ Dext to obtain the label P(xi),
which concludes the first stage.
Stage 2: Query the Language Model. The second stage

for training set preparation is to convert the sentences in

Dext to the corresponding embeddings. Ideally, it is quite

straightforward as the adversary only needs to query the

language model with each sentence. In practice, according

to the knowledge of which model is used, the adversary can

deploy the corresponding pretrained model on his/her devices

for local query. The adversary may also save some budget by

utilizing online language model services [74]. Without loss

of generality, our evaluations are conducted in the former

setting. More details can be found in Appendix G. At the

end of this stage, we have the training set Dtrain of the form

{(zi,P(xi))}Ni=1, where zi is the embedding corresponding to

the sentence xi.
Stage 3: Train the Attack Model. With the training set

Dtrain at hand, the adversary can now train an attack model

g for inference usage. In general, the model is designed as

a classifier, which takes the embedding zi as its input and

outputs a probabilistic vector g(zi) over all possible values of

the sensitive information. To train the attack model with the

prepared dataset, the adversary needs to solve the following

optimization problem with gradient-based algorithms such

as Stochastic Gradient Descent (SGD [56]) or Adam [39],

ming
1
N

∑N
i=1 �(g(zi),P(xi)), where � is a loss function that

measures the difference between the predicted probabilities

and the ground-truth label. Throughout this paper, � is always

implemented as the cross-entropy loss.

As a final remark, depending on the knowledge level of

the adversary, the architecture of g varies in different settings.

For example, knowledgeable attackers will find off-the-shelf

classifiers such as logistic regression or linear SVM work

surprisingly well, while attackers with no prior knowledge can

leverage advanced transfer learning techniques for successful

attacks.

Stage 4: Inference. After the training phase, given the

target embedding z, the adversary infers the sensitive in-

formation based on the following equation s := A(z) =
argmaxi∈{1,2,...,K}[g(z)]i, where [g(z)]i is the value of g(z)
at its i-th dimension and K denotes the total number of

possible values for s. In other words, the adversary considers

the value with the highest probability as the most possible

value of the sensitive information in the unknown sentence x.

V. PATTERN RECONSTRUCTION ATTACK

In this section, we focus on the situation when the adversary

has knowledge of the generating rule of the unknown plain

text, which usually happens when the format of the plain

text is common sense (e.g., identity code). We provide this

section as a starting point to understand how much sensitive

information is encoded in the embeddings from the general-

purposed language models.

A. Attack Definition

Intuitively speaking, the pattern reconstruction attack aims

at recovering a specific segment of the plain text which has

a fixed format. The target segment may contain sensitive

information such as birth date, gender or even gene expression.

Formally, we construct the pattern reconstruction attack under

the following assumption.

• Assumption 3a. The format of the plain text is fixed and

the adversary knows the generating rules of the plain text.

Following the general statements in Section IV-A, we

formally define the routine P for extracting the sensitive

information s from the sentence x := (w1, . . . , wn) as

Ppattern : (w1, . . . , wn) → (wb, . . . , we), where b and e are

the starting and the termination index of the target segment.

As P is assumed to be publicly known, it is also known by

the adversary. Therefore, the pattern reconstruction attack w.r.t.

Ppattern can be defined as Apattern : z → (wb, . . . , we).
To be concrete, we provide the following two illustrative

examples.

Case Study - Citizen ID (abbr. Citizen). Structured informa-

tion such as identity code or zip code commonly appears in our

daily conversations, and these conversations are proved to be

useful for training chatbots with the aid of general-purpose

language models [55]. However, we find if the messages

are not properly cleaned, the adversary, given the sentence

embeddings, is capable to recover the structured information
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with high accuracy and thus conduct further harassment. For

example, in many countries, citizen ID is a typical sensitive

information for its owner. Once being leaked to the adversary,

the identity code can be used to access the victim’s other

sensitive information or allow the adversary to impersonate the

victim to participate in illegal activities [3]. To demonstrate,

we consider the case of citizen ID in China, which consists

of the 18 characters (from the vocabulary {0, . . . , 9}), i.e. 6
for the residence code (3000 possibilities), 8 for the birth date

(more than 100 × 12 × 30 possibilities) and 4 for extra code

(104 possibilities). Consider the adversary wants to recover

the exact birth date of the victim via the leaked embedding of

his/her citizen ID, we define the mapping P as

Pcitizen : |residence|birthday|extra| → |birthday| (1)

Case Study - Genome Sequence (abbr. Genome). Roughly,

a genome is a sequence of nucleotide which has four different

types, namely A, C, G, T, as its vocabulary. With increasingly

many NLP techniques being applied in computational genet-

ics and pharmacogenomics [43], [45], [81], general-purpose

language models are also used in genomics-related tasks.

To demonstrate this point, we implement eight benchmark

systems by incorporating different general-purpose language

models for splice site prediction [45], a classical binary

classification problem in computational genetics. Basically,

our systems exhibit a high utility performance. For example,

the splice site prediction system with Google’s Bert achieves

over 75% classification accuracy. We report the utility of our

systems in Fig. Fig. 8(a) of the Appendix and more details in

Appendix A.

However, genetic data is highly sensitive in a personalized

way – even the nucleotide type at a specific position i in a

genome sequence can be related with certain type of genetic

decease or characterizes racial information [65] – and thus the

adversary is very likely to be interested in recovering the exact

nucleotide at a target position. From the disclosed nucleotide,

the adversary can further know the gender, race or other

privacy-critical information of the victim. For demonstration,

we define the mapping P as Pgenome,i : (w1, w2, . . . , wn) →
wi. In other words, the nucleotide at position i is assumed to

be sensitive.

B. Methodology

To realize the attack Apattern, we present the implementation

details on preparation of the external corpus and the architec-

ture of the attack model. In the following parts, we denote the

set of all possible values for sequence s as V (s).
1) Generate External Corpus: Knowing the generating rule

of the target plain text, the adversary can prepare the external

corpus via generating algorithms. A basic generating algorithm

generates batches of training samples by randomly sampling

from the possible values in V (x), i.e. the set of all possible

sentences.

2) Attack Model’s Architecture: Naively, the attack model

g can be designed as a fully-connected neural network that

has input dimension d and output dimension |V (wb . . . we)|,

i.e. the number of possible values of the sensitive segment.

However, |V (wb . . . we)| can be very large. For example, in the

Citizen case, the number of possible birth dates is near 40, 000.

As a result, the free parameters in the attack model will be of

large number, which further makes both the batch generation

and model training difficult. To tackle this, we follow the

divide-and-conquer idea to decompose the attack Apattern into

small sub-attacks, according to the adversary’s knowledge of

the format. Again on Citizen, we can decompose the attack

model gbirth into three sub-attacks, namely year attack gyear,

month attack gmonth and day attack gday. Each sub-attack model

can be independently implemented with fully-connected neural

networks of much smaller size and the total parameter number

is largely truncated from O(|V (wb)| × . . . × |V (we)|) to

O(|V (wb)|+. . .+|V (we)|). Besides, the generating algorithm

can also be decomposed to subroutines for each attack model,

so that the training of each sub-module can be conducted in

parallel.

C. Experimental Setup

Benchmark Systems.
• Citizen: We randomly generate 1000 citizen IDs according

to the generating rule in Eq. 1 as the ground-truth plain text.

Then we query the target language model with these citizen

IDs to get the corresponding embeddings as the victims.

• Genome: We implement eight genome classification systems

for splice site prediction based on a public genome dataset

called HS3D (Homo Sapiens Splice Sites Dataset [53]). All

the genome sequences are of length 20. We assume the

embeddings of genome sequences in the test set, which

contains respectively 1000 samples with or without the

splice site, are leaked to the adversary.

Attack Implementation.
• Citizen: Following the discussion in Section V-B, we im-

plement the year, month and date sub-attacks as three-layer

MLPs which respectively contain 400, 25, 200 hidden units

with sigmoid activation. The training batch size is set as 128
for each sub-attack.

• Genome: In practice, we augment the training pair (z, wi) by

concatenating the embedding z of the generated sample with

the positional embedding pi for the target position i. We

discuss the motivation in Appendix B. Technically, we use

the sinusoidal positional embedding as in [72], which has the

same dimension as z. Corresponding to this modification,

we implement one single attack model for inferring the

nucleotide type at any specified position. Different from the

Citizen case, this modification will not increase the param-

eter number as the class number is still 4. The attack model

is implemented as a four-layer MLP which takes input z⊕pi
of dimension 2d and has 400, 100 hidden units with sigmoid

activation and intermediate batch normalization layers [32]

for faster convergence. For training, we generate mini-

batches of size 128 that consist of tuples (z, pi, wi), where

the positional embedding i is randomly sampled from the

interval of possible positions (i.e., 1, . . . , 20). For inference,

the attacker inputs the victim’s embedding and the target
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TABLE II
ACCURACY OF SEGMENT RECONSTRUCTION ATTACKS ON CITIZEN.

Year Month Date Whole

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Bert 0.661 0.926 0.616 0.950 0.539 0.885 0.219 0.384
Transformer-XL 0.725 0.927 0.802 0.992 0.839 0.992 0.488 0.624

XLNet 0.506 0.748 0.484 0.877 0.457 0.797 0.112 0.186
GPT 0.735 0.978 0.601 0.987 0.630 0.960 0.281 0.434

GPT-2 0.626 0.882 0.664 0.968 0.624 0.927 0.259 0.384
RoBERTa 0.454 0.774 0.441 0.889 0.307 0.703 0.061 0.108

XLM 0.572 0.847 0.509 0.911 0.642 0.908 0.187 0.263
Ernie 2.0 0.584 0.892 0.559 0.924 0.465 0.843 0.152 0.257
Baseline 0.01 0.05 0.083 0.417 0.033 0.167 0.0001 0.0005

position and the model outputs the predicted nucleotide type.

More implementation details can be found in Appendix B.

D. Results & Analysis

Table II reports the Top-1 and Top-5 accuracy of the

sub-attacks and of inferring the whole birth date with the

ensemble attack after 100, 000 iterations of training, where the

baseline denotes the performance of a random guesser. Fig. 3

reports the average and per-nucleotide Top-1 accuracy of the

attacks on Genome after 100, 000 iterations of training, where

we report the proportion of the most frequently appeared

nucleotide type as the baseline.

1) Effectiveness & Efficiency: From Table II & Fig. 3,

considering the performance of baseline, we can see that our

attacks are effective in recovering sensitive segments from

their embeddings. For example, when given Transformer-XL

(abbr. XL in later sections) embeddings of citizen ID, our

attack is able to recover the exact month and date of the vic-

tim’s birthday with over 80% Top-1 accuracy and recover the

whole birth date with over 62% Top-5 accuracy. When given

GPT embeddings of genome sequences, our attack achieves

near-100% accuracy of inferring the victim’s nucleotide type

at both ends and over 62% accuracy on average. These results

highly demonstrate the effectiveness of our attacks and thus

the common existence of privacy risks in the popular industry-

level language models.

Moreover, our attack is also efficient in terms of the

throughput, which are reported in Table VI of the Appendix. In

both cases the attack can learn from over 100 batches in one

second. To achieve the reported accuracy, the training takes

less than 30 minutes on a medium-end PC. More details of

our experimental environment is in Appendix H.

Fig. 3. Accuracy of segment reconstruction attacks on Genome per nucleotide
position. The average accuracy is reported in the legend.

2) Comparison among Language Models: First, we notice

Facebook’s RoBERTa shows stronger robustness than other

language models in both cases. By investigating its design,

we find RoBERTa is a re-implementation of Google’s Bert but

uses a different byte-level tokenization scheme (i.e., tokenize

sentences in the unit of bytes instead of characters or words)

[44]. As RoBERTa shows about 50% lower privacy risks than

Bert when facing the same attacks, we conjecture the reason is

that the byte-level tokenization scheme may make the embed-

dings less explicit in character-level sensitive information and

thus more robust against our attacks. Similar phenomenon is

also observed in the next section. However, RoBERTa suffers

a clear utility degradation as a trade-off between utility and

privacy. As we can see from Fig. 6(c), the system with Bert

achieves an about 33% higher utility performance than that

with RoBERTa on Genome. Also, we notice OpenAI’s GPT

and GPT-2, which share the same architecture but are pre-

trained on 4GB and 40GB texts, show similar security proper-

ties against our attacks and comparable utility performance.

Combined with other results, no immediate relatedness is

observed between the pretraining data size and the privacy

risk level.

3) Other Interesting Findings: From Fig. 3, we can see a

majority of the accuracy curves present a valley-like shape,

which implies that most language models capture more infor-

mation of the tokens around the ends than those in the middle,

which is probably due to the information at ends usually

propagates along the longest path in the recurrent architecture.

In other words, the sensitive information which lies at the

sentence boundary is more prone to malicious disclosure.

VI. KEYWORD INFERENCE ATTACK

In this section, we study a more general scenario where

the plain text can be arbitrary natural sentences and the
knowledge-level of the adversary is much lower. As a result,

successful attacks in this case can impose stronger threats to

real-world systems.

A. Attack Definition

The adversary in keyword inference attack is curious about

the following predicate, whether certain keyword k is con-

tained in the unknown sentence x. The keyword k can be

highly sensitive, which contains indicators for the adversary

to further determine e.g., location, residence or illness history

of the victim [62].

Before introducing two illustrative examples, we formulate

the mapping Pkeyword,k for defining the sensitive information

related with keyword k from a sentence x as Pkeyword,k :
x → (∃w ∈ x,w == k), where the right side denotes a

predicate that yields True if a word w in the sentence x is the

target keyword k and otherwise False. As the keyword k is

specified by the adversary, the routine Pkeyword,k is obviously

known by him/her. Correspondingly, the keyword inference

attack regarding Pkeyword,k is defined as Akeyword,k : z →
(∃w ∈ x,w == k). Different from pattern reconstruction

attacks, keyword inference attacks probes the occurrence of

certain keywords instead of exact reconstuction of the whole

sequence.

Case Study - Airline Reviews (abbr. Airline). Sometimes

airline companies survey their customers in order to e.g.,
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improve their customer service. With the aid of advanced NLP

techniques, large amounts of airline reviews in text form can be

automatically processed for understanding customers’ opinion

(i.e., opinion mining [69]). As is widely recognized [16], [17],

[41], utilizing the pre-trained language models for feature

extraction can further improve the utility of many existing

opinion mining systems.

However, once accessing the embeddings, the adversary can

infer various location-related sensitive information about the

victim, including his/her departure, residence, itinerary, etc. As

a preliminary step for further attacks, we show the adversary

can accurately estimate the probability of whether certain city

name is contained in the review.

Case Study - Medical Descriptions (abbr. Medical). With

the booming of intelligent healthcare, some hospitals tend to

build an automatic pre-diagnosis system for more effective

service flow [28]. The system is expected to take the patient’s

description of the illness to predict which department he/she

ought to consult. To form a benchmark system, we concatenate

the pretrained language models with an additional linear layer

for guiding the patients to 10 different departments. Through

evaluations, we show the systems can achieve over 90%
accuracy on real-world datasets in Fig. 8(b) of the Appendix.

More details can be found in Appendix A.

However, when the adversary gets access to the embeddings

only, he/she can indeed infer more sensitive and personalized

information about the patient as a victim. Besides the depart-

ment the patient ought to consult, the adversary can further

determine other fine-grained information like the disease type

or even the precise disease site. To demonstrate, we suppose

an adversary wants to pinpoint the precise disease site of the

victim by inferring the occurrence probability of body-related

words in his/her descriptions.

B. Methodology

In this part, we detail our implementations for keyword

inference attacks. According to the different levels of the

adversary’s knowledge on the plain text, the methodology

part is divided into white-box and black-box settings, which

respectively require the following two assumptions.

• Assumption 3b. The adversary has access to a shadow
corpus, which consists of sentences that are sampled from

the same distribution of the target plain text (which we refer

to as white-box).

• Assumption 3c. The adversary has no information on the

target plain text (which we refer to as black-box).

Noteworthily, the adversary under Assumption 3c has almost

no prior knowledge except that he/she (e.g., any attacker who

captures the embeddings) has access to the embeddings, which

therefore poses a rather practical threat to the general-purpose

language models, while Assumption 3b is also possible to

happen in real-world situations when, if we continue the above

medical example, some hospital publishes an anonymised

dataset of medical descriptions for research purposes [1] or

the service provider is honest-but-curious.

Attack in White-Box Settings. Basically, as the adversary has

a shadow corpus Dshadow := {(x′
i)}Ni=1 which is sampled from

the same distribution as the unknown plain text, he/she can

directly use Dshadow as the external corpus Dext and extract

the binary label y
′
i = Pkeyword,k(x

′
i). Next, the adversary

trains a binary classifier with the dataset to conduct Akeyword,k.

However, we notice in practice the adversary may confront

with several pitfalls.

First, the label set {y′
i}Ni=1 can be highly imbalanced. In

other words, the sentences with the keyword k (i.e., the
positive samples) may be in an absolute minority compared to

those without k (i.e., the negative samples). According to pre-

vious researches, imbalance in label will let the attack model

prone to overfitting and thus hinder the attack’s performance

[33]. To alleviate, we propose to randomly replace certain

word in the negative samples with the keyword, and we replace

the keyword in the positive samples with other random word

in the vocabulary (referred to as the word substitution trick).

After this operation, the original shadow corpus will be twice

enlarged and the samples are balanced in both classes.

Next, the shadow corpus after word substitution can still be

limited in size, i.e., N is small. In this case, we suggest the

adversary should implement their attack model with a Support

Vector Machine (SVM), which is especially effective for small

sample learning [71]. When M is larger than certain threshold

(empirically over 103 samples), the adversary can switch to

a fully-connected neural network as the attack model, which

brings higher attack accuracy.

Attack in Black-Box Settings. The adversary under Assump-

tion 3c faces the most challenging situations, as he/she has

merely no prior knowledge of the plain text. In turn, successful

attacks in this general scenario will raise a huge threat on the

privacy of general-purpose language models.

To implement the keyword inference attack with no prior

knowledge, we propose to first crawl sentences from the

Internet to form the external corpus and then transfer the

adversarial knowledge of an attack model on the external

corpus to the target corpus dynamically. Details are as follows.

1) Create the External Corpus from Public Corpora:
With the aid of the Internet, it is relatively convenient for

the adversary to obtain an external corpus from other public

corpora. Next, the adversary can generate positive and negative

samples via the same word substitution trick we mentioned in

the previous part.

2) Transfer Adversarial Knowledge: During our prelimi-

nary attempts, we find if we directly train an off-the-shelf

classifier (e.g., linear SVM or MLP) on the external corpus

and use it to conduct keyword inference attacks on the

target embeddings, the attack’s accuracy can sometimes be

poor. We speculate it is the domain misalignment that causes

this phenomenon. To validate, we first train a 3-layer MLP

classifier on an external corpus w.r.t. the keyword head, which

is prepared from the Yelp-Food dataset (i.e., a dataset that

consists of restaurant reviews). Next, we plot the decision

boundary of the classifier on the external corpus in Fig. 4(a).

We also plot the expected decision boundary of the classifier
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on the target medical dataset that contains 1000 sentences

in Fig. 4(b), where the scattered points plot the intermediate

representations of the XLNet embeddings at the hidden layer

after dimension reduction with Principle Component Analysis

(PCA) and the two colors imply whether the plain text contains

head or not 1. As we can see, the two decision boundaries are

almost orthogonal to each other. As a result, even though the

attack model on the public domain (i.e., on restaurant reviews)

achieves a near 100% accuracy, its performance is no better

than random guess when applied on the private domain (i.e.,

on medical descriptions).

Fig. 4. Domain misalignment between (a) the external corpus and (b) the
target corpus, through the lens of the (expected) decision boundary of a MLP
classifier trained on the external corpus.

In general, the key challenge here is how to transfer the

adversarial knowledge learned by the attack model from the

public domain (e.g., Yelp-Food dataset) to the private one (e.g.,

medical dataset). First, we introduce some essential notations.

We denote the public domain and the private domain respec-

tively as X0,X1. Given a training set Dpublic := {(z′
i, y

′
i)}Ni=1

from X and some target embeddings Dprivate := {zi}n1
i=1 from

Y , the adversary wants to train an attack model Akeyword,k that

performs well on Dprivate. When the Dprivate and Dpublic dis-

tribute divergently, the straightforward approach works poorly

and thus the phenomenon in Fig. 4 occurs.

Therefore, we propose to learn a unified domain-invariant

hidden representations for embeddings from Dprivate and

Dpublic. To realise this, we are inspired from the idea of

Domain-Adversarial Neural Network (DANN) [9] and propose

the architecture of our attack model in Fig. 5.

Fig. 5. Architecture of the attack model in the black-box setting.

The model consists of four sub-modules. First, the module

E is an encoder which takes the sentence embedding as input

and is expected to output a domain-invariant representation ẑ.

The hidden representation is followed by two binary classi-

fiers, i.e. Ckeyword and Cdomain. The keyword classifier Ckeyword

takes ẑ as input and predicts whether the sentence x contains

the keyword k, while the domain classifier Cdomain outputs

whether the embedding comes from X0 or X1. In practice, we

1More details regarding the external corpus and the medical dataset can be
found in the next section.

implement E as a nonlinear layer with sigmoid activation and

implement Ckeyword and Cdomain as two linear layers followed

with a softmax layer. For both classifiers, the loss is calculated

as the cross-entropy between the output and the ground-truth.

Moreover the loss of Ckeyword is calculated on Dpublic, while

the loss of Cdomain is calculated on {(z′
i, 0)}Ni=1∪{(zi, 1)}n1

i=1.

In our implementations, an additional module called gradi-
ent reversal layer [9] is fundamental to learn domain-invariant

representations and therefore help transfer the adversarial

knowledge. The gradient reversal layer is intermediate to the

domain classifier and the hidden representation, which works

as an identity layer during the forwarding phase and reverses

the gradient by putting a minus sign to each coordinate during

the back-propagation phase. Intuitively, the gradient reversal

layer regularizes the hidden representation ẑ by amplifying the

keyword-related features and eliminating the domain-related

information. Algorithm 1 in Appendix I details a typical

iteration in the learning process of our DANN-based attack

model. For inference, we take Ckeyword ◦E as the attack model

g.

C. Experimental Setup

We evaluate the proposed keyword inference attack with

two case studies on Airline and Medical in both white-box

and black-box settings.

Benchmark Systems.
• Airline: We collect the airline review dataset from Skytrax

[5] and preserve the reviews that contain one of the 10
specified city names (e.g., Bangkok, Frankfurt, etc.) to form

our benchmark dataset. The preprocessed dataset contains

4685 airline reviews (average length 15), and we randomly

split the dataset into 10 : 1 to get the test set and the shadow

dataset, which is used to simulate the white-box setting.

We choose the shadow set to be the much smaller partition

to better simulate the real-world situations. We then query

the target language models with the reviews in the test set

and obtain the embeddings as the victims. In the black-box

setting, the adversary only accesses the embeddings of the

test set for adversarial knowledge transfer. We suppose the

adversary’s keyword set as the 10 appeared city names.

• Medical: We implement eight pre-diagnosis systems based

on the CMS public healthcare records [1]. These systems

are designed to guide patients to the proper department

according to the textual description of their disease. We

report the utility of the benchmark systems and more imple-

mentation details in Appendix A. The preprocessed dataset

contains 120, 000 disease descriptions of average length 10.

We randomly split the dataset into 10 : 1, to form the test

set and the shadow dataset. We query the target language

models with the descriptions in the test set to form the target

set. We suppose the adversary’s keyword set contains 10
body-related words (e.g., head, foot, etc.) that appear in the

dataset.

Metrics. For evaluations, we prepare balanced test sets for

each target keyword. In detail, we preserve the embeddings

of all sentences that contain the keyword from the test set as
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Fig. 6. (a), (e): Accuracy of DANN-based attack per keyword on (a) Airline and (e) Medical. (b), (f): Accuracy of keyword inference attack on (b) Airline
and (f) Medical, averaged on 10 specific city names as keywords. (c): Accuracy of MLP-based white-box attack on Medical with varied size of the shadow
corpus. (d), (g), (h): Accuracy of DANN-based attack on Medical with (d) different size of the external corpus, (f) varied dimension of the domain-invariant
representation and (h) varied number of victim embeddings.

the positive samples, and randomly sample the same number

of embeddings from the rest of the test set as the negative

samples. The statistics of each test set is in Appendix H. We

measure the attack’s effectiveness on each keyword with the

classification accuracy on the prepared test sets. To ensure

the attack’s effectiveness is not caused by the adversary’s

knowledge of which keyword to infer, we also conduct black-

box attacks with DANN on Airline and Medical to infer 5
random keywords which are not contained in the target corpus.

External Corpus in Black-Box Setting. Following the pro-

cedures in Section VI-B, we create the external corpus for the

black-box setting from the Yelp-Food dataset, which contains

customers’ reviews for local restaurants, has less than 20%
common words with Medical or Airline and can be replaced

with other public corpus. Specifically, we choose 2000 sen-

tences that contain the word salad and prepare 2000 positive

and negative samples respectively for each keyword inference

attack with our proposed word substitution trick.

Attack Implementation.
• White-box setting: We study two implementations of the

attack model in the white-box setting, namely the linear

SVM and the 3-layer MLP with 80 hidden units with

sigmoid activations. The batch size is set as 64.

• Black-box setting: We study three implementations in

the black-box setting, namely linear SVM, 3-layer MLP

and the DANN-based attacks. The DANN model has 25-

dimensional domain-invariant representations and the co-

efficient λ in Algorithm 1 is set as 1. We use the Adam

optimizer with learning rate 0.001 for both the MLP and

the DANN-based attacks. The batch size is set as 64.

D. Results & Analysis

Fig. 6(b) & (f) report the performance of keyword inference

attacks in white-box and black-box settings with different

attack models, respectively on Airline and Medical. The results

are averaged on 10 keywords. We also provide the DANN-

based attacks’ accuracy on each keyword in Fig. 6(a) & (e).

Due to the game-theoretical essence of DANN, we notice the

accuracy of DANN-based attacks dynamically change over

time. We report both the average and the optimal accuracy

of the DANN-based attack in 50 epochs to reflect the average

and worst-case privacy risk. For the baseline methods SVM &

MLP, we report their accuracy after their learning processes

converge.

1) Effectiveness & Efficiency: These experimental results

highly demonstrate the effectiveness of our attacks in both

white-box and black-box settings. For example, from Fig. 6(f),

we can see our white-box attack, given Bert’s embeddings of

the victims’ medical descriptions, achieves over 99% accuracy

when inferring the occurrence of certain body part, while our

black-box attack with no prior knowledge can still achieve

over 75% accuracy on average. Similarly, when given the

GPT and GPT-2 embeddings of the victim’s airline review,

our white-box and black-box attacks respectively achieve over

95% and 75% accuracy on average for inferring the occurrence

of certain city names. We also report the DANN-based attacks’

accuracy on Airline and Medical in Table III, when inferring

on 5 random keywords which are not contained in the target

sentences. As we can see, our black-box attack achieves over

90% average accuracy in most cases. Moreover, we report

the throughput of training attack models in Table VI, which

indicates the attacks can be efficiently constructed in less

than 2 minutes. Combined with the success of the pattern

reconstruction attacks in the previous section, these obser-

vations further support our main finding that much sensitive

information is encoded in the embeddings from these 8 target

language models and can be practically reverse-engineered for

malicious purposes.

2) Comparison among Language Models: From Fig. 6(b),

we notice Google’s XL and Facebook’s RoBERTa show much

stronger robustness than other language models when facing

our white-box attacks on Airline. For these two models, our

white-box attacks only outperform the random guesser with a

slight margin, while on Medical, white-box attacks aiming at
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TABLE III
AVERAGE AND WORST-CASE RISK WHEN DANN-BASED ATTACKS INFER

5 RANDOM KEYWORDS (# OF TEST SAMPLE SIZE = 1000).

Name
Medical

(worst/average)
Airline

(worst/average)

Bert 1.000/0.860 0.999/0.891
Transformer-XL 0.667/0.555 0.907/0.807

XLNet 0.974/0.951 0.994/0.974
GPT 0.996/0.974 0.998/0.987

GPT-2 0.998/0.973 0.995/0.981
RoBERTa 0.996/0.992 0.998/0.996

XLM 0.948/0.907 0.959/0.925
Ernie 2.0 0.965/0.862 0.964/0.922

these two models achieve around 80% accuracy when attacks

on other models are uniformly over 95%. This phenomenon

implies the sensitive information in XL’s and RoBERTa’s em-

beddings is much harder to be reverse-engineered, which we

speculate the major causes as XL’s relative small pretraining

data size (and thus smaller vocabulary [16]), and RoBERTa’s

byte-level tokenization scheme. As a result, linear SVM has no

sufficient learning capacity [71] to exploit the sensitive infor-

mation from their embeddings, while the MLP-based attacks

suffer from underfitting caused by the limited sample size on

Airline (only about 400 on Airline c.f. 2000 on Medical).

However, combined with Fig. 6(g), slight utility-privacy trade-

off is observed on Medical for XL, which shows about 7%
lower utility than the best utility performance achieved by Bert,

while no utility-privacy trade-off is observed for RoBERTa,

which is probably because the utility performance of most of

our systems is high (over 90%) and hence the utility difference

is not very clear.

3) Comparison among Attack Implementations: First, com-

paring the left two columns and the right three columns in

each bar group of Fig. 6(b) & (f), we can see the white-

box attacks in general are more effective than the black-box

counterparts. For example, we notice white-box attacks on

Medical show an average 25% margin over the black-box

attacks, while exceptions are observed for RoBERTa and XL,

which we have discussed above. Next, among the black-box

attacks, MLP and DANN attacks show similar effectiveness

in many configurations. However, for Facebook’s XLNet on

Medical, the accuracy of the MLP attack is only 0.560,

which corresponds to the domain misalignment in Fig. 4,

while the DANN approach improves the attack’s accuracy

to 0.601 on average and 0.691 in the worst case. Finally,

we also investigate the performance of DANN attacks on

each keyword. From Fig. 6(a) & (e), we can see different

language models have their especially vulnerable keyword.

For example, DANN-based attack achieves over 95% accuracy

when inferring the word chest from Google’s Bert embeddings,

and over 80% when inferring ankle from Baidu’s ERNIE

embeddings. We would like to invesigate the fundamental

cause of this interesting phenomenon in a future work.

4) Ablation Study: We also conduct an overall ablation

study by investigating the keyword inference attack in a wide

range of configurations on three variants of OpenAI’s GPT-

2 (namely GPT-2, GPT-2-Medium, GPT-2-Large), which are

pretrained on the same corpus, but increments in parameter

numbers and embedding dimension [55]. Detailed statistics

can be found in Appendix H.

First, we study the the impact of external corpus size on

the attack effectiveness: (1) For the white-box setting, we

vary the size of the shadow corpus, which represents the

knowledge level of the adversary in the white-box setting, in

{10, 100, . . . , 1000} and conduct the MLP attack on Medical.

The results are provided in Fig. 6(c). As we can see, the

attack accuracy remains over 90% for each language model

when the shadow corpus size is larger than 100. Moreover,

we interestingly observe, a larger language model (GPT-2-

Large) is less robust than a smaller one when the adversary’s

knowledge is limited. When the shadow corpus size is only

10, the attack accuracy is 68.5%, 61.0% and 59.4% against

GPT-2-Large, GPT-2-Medium and GPT-2 respectively. This

observation is also consistent with the conclusion in [34]:

complicated models tend to enlarge the attack surface. (2)

Similarly, for the black-box setting, we compare the DANN

attack’s performance by varying the size of the external corpus

from 100% to 5% of the original size 2000, with results

reported in Fig. 6(d). As we can see, a larger external corpus

helps our attack achieve higher accuracy, which demonstrates

the effectiveness of our proposed adversarial knowledge trans-

fer procedure.

Also, we study the robustness of DANN attack w.r.t. its

hyperparameters. We respectively control the size of the victim

embeddings, which corresponds to the knowledge level of

the adversary in the black-box setting, and the dimension of

the domain-invariant representation in DANN, which is the

only architectural factor of DANN, and conduct the DANN

attack on Medical. For these two settings, we report the

attack accuracy respectively in Fig. 6(g) & (h). As is shown,

the accuracy of DANN attack remains high with different

hyperparameter choices, which highly reflects the robustness

and effectiveness of our proposed attack model.

VII. POSSIBLE DEFENSES

As the sentence embedding is the direct source of potential

information leakage, a general principle for mitigation is to

obfuscate the embeddings. For this purpose, we empirically

evaluate four possible technical choices, where the first three

are general against both attacks and the last one is specially

designed for keyword inference attack. Although the ideal situ-

ation is that the sensitive information can be totally eliminated

while the required information for other normal tasks can be

highly preserved, in practice such a utility-privacy trade-off

seems unavoidable, at least according to our reported trade-

off results below. Here, the utility denotes the classification

accuracy of the underlying benchmark systems. We hope our

preliminary study will foster future mitigation studies. The

omitted technical details and experimental setups can be found

in Appendix C.

(1) Rounding. For the first defense, we apply floating-point

rounding on each coordinate of the sentence embeddings for

obfuscation. Formally, we write the rounding defense as ẑ =
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Fig. 7. The utility and attack accuracy curves along on Genome and Medical when four possible defenses with different parameters are applied for mitigation.
For DP & PPM defenses, the x-axes of utility and attack accuracy curves are in log scale.

rounding(z, r), where the non-negative integer r denotes the

number of decimals preserved after rounding.

(2) Laplace Mechanism. For the second defense, we leverage

a differential privacy approach, the Laplace mechanism [20].

Roughly speaking, we perturb the embedding coordinate-wise

with samples from a Laplace distribution whose parameters

are determined by the �1-sensitivity of the language model f
(denoted as Δf , which we estimate with numeric algorithms).

Formally, the defense works as ẑ = z+(Y1, . . . , Yd), where Yi
are i.i.d. random samples drawn from Lap(Δf/ε), the Laplace

distribution with location 0 and scale Δf/ε.

(3) Privacy Preserving Mapping. The third defense is

based on adversarial training. We borrow the notion of a

Privacy Preserving Mapping (PPM) from [57] to denote a

mapping Dθ : R
d → R

d parameterized by θ, which is

trained to minimize the effectiveness of an imagined adversary

Aψ . Meanwhile, the PPM is required to follow the utility

constraint by distorting the embeddings only in a limited radius

around the original embedding, which is implemented as a

regularization term. Formally, we propose to learn the privacy

preserving mapping Dθ by solving the following minimax

game minθmaxψ
1
n

∑n
i=1 Aψ(Dθ(zi), si) + λ‖Dθ(zi)− zi‖2

where λ controls the privacy level, the higher the lower privacy

level.

(4) Subspace Projection. The last defense is especially

designed as a countermeasure to keyword inference attacks,

inspired by [14] on debiasing word embeddings from gender

bias. The general idea of this defense is to project out

the unwanted subspace (i.e., privacy subspace) that encodes

the occurrence of the keyword from the universal sentence

embedding space. Technical details on how to identify the

privacy subspace and how to do the projection can be found

in Appendix C. In our evaluations, we consider the ratio β
between the dimension of the privacy subspace and that of the

universal embedding space as the parameter of this defense.

Intuitively, a higher β is expected to bring a stricter privacy

mechanism.

Evaluations. We evaluate the first three defenses against the

pattern reconstruction attack on Genome and all four defenses

against the DANN-based keyword inference attack on Medical

with a wide range of settings. The configurations and results

of the first three defenses are presented in Fig. 7.

As we can see from Fig. 7, although each defense can

attenuate the attacker to a total random guesser under certain

privacy budgets, they simultaneously compromise the utility of

downstream tasks by causing an unacceptable degradation. For

example, the Laplace mechanism degrades the utility to a total

random guesser as well when achieving the optimal defense

performance. For PPM, despite a slighter trade-off is observed,

the utility for RoBERTa and Transformer-XL still degrades

from over 90% to around 25% when the optimal defense

is achieved. Among these defenses, we notice the subspace

projection defense could provide a more desirable defense

quality than the three possible defenses. For example, for

most of the target language models, the defense can degrade

the DANN attack to a random guesser by projecting out

only the 1% keyword-related subspace. However, the utility

of the embeddings on the downstream task still decreases by

about 15% compared with the 95% accuracy with unprotected

embeddings, which implies the keywords that we want to hide

are also critical to provide essential semantics for downstream

tasks. Moreover, the quality of subspace defense in practice

would be less desirable due to its blindness to the target

keyword that the adversary is interested in.

According to our preliminary results above, how to balance

the elimination of token-level sensitive information from the

embeddings and the preservation of the essential information

for normal tasks is still an open problem that awaits more

in-depth researches. In consideration of the practical threats

imposed by our attacks on the applications of general-purpose

language models, we highly suggest the exploration of effec-

tive defense mechanisms as a future work.

VIII. DISCUSSIONS

On Threat Model. For Assumption 0, the adversary can

get the sentence embeddings of victims if general-purpose
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language models are deployed in collaborative or federated

learning systems, especially when a) the service provider

itself wants to snoop user’s sensitive information or b) the

embeddings are shared accidentally or abusively with some

malicious attackers. In some recent protocols, the feature

may be encrypted with homomorphic encryption schemes for

privacy protection [24], which therefore requires an adver-

sary to first encrypt the embeddings of the external corpus

with the public key and train the attack models on the

encrypted external corpus. This is an interesting scenario that

deserves dedicated research and we leave this as a future

work. Nevertheless, there are also many scenarios which are

not suitable for homeomorphic encryption schemes due to

efficiency issues, such as real-time long passage translation

[75] or search engines with language models [6]. In these

scenarios, our attacks remain huge threats.

For Assumption 1, we devise a learning-based fingerprinting

algorithm by first determining the candidate model types

based on the dimension size and then pinpointing the exact

model type with a pretrained classifier. Strikingly, we find

the classification accuracy can achieve 100%. More technical

details and analysis can be found in Appendix D.

For Assumption 2, the adversary can easily satisfy the

assumption by deploying the language model on local devices

or accessing the corresponding online services. In the current

work, we adopt this assumption considering the generality of

our attack. Nevertheless, the adversary could further exploit

the specific language model architecture and pretrained pa-

rameters for better attack effectiveness, which is an interesting

and meaningful direction to pursue in the future work.

Downstream Attacks. As we have mentioned in Sections V &

VI, our proposed attacks can be further used for downstream

attacks that can cause more severe consequences. For example,

if the attacker for some reason gets the embedding of the

treatment description “CT scan of blood vessel of head with

contrast”, he/she can utilize the proposed keyword inference

attack to infer the occurrence probability of each word in a

customized vocabulary (e.g., the vocabulary contains head and

vessel because they are frequent words in medical descrip-

tions), sort the occurrence probability in the decreasing order

(e.g., the two words head and vessel both have occurrence

probability higher than 90%) and thus inverts out the meaning

of the sentence (e.g., the patient may have something abnormal
in the blood vessel of his head). Appendix E provides a demon-

strative experiment that implement the above guideline. We

find the adversary can indeed reassemble the basic semantic

meaning of the original text with the above procedure, even

if some words may not be in the customized vocabulary.

Utility vs. Privacy in Deploying Sentence Embeddings.
Our current work indicates the improved utility of sentence

embeddings from general-purpose language models is at odds

with the privacy. In principle, to balance the utility-privacy

trade-off requires the sentence embedding to preserve the

information that is desired for the downstream task and to

discard the remainder, while the following dilemma happens

for general-purpose language models: these models are es-

pecially designed to provide embeddings that can be used

for a wide range of downstream tasks [17], which conse-

quently enforces the embeddings to preserve much token-level

information, which is critical in forming semantics in many

cases and hence leaves the adversary a window for privacy

breach. Based on our systematic evaluations of eight state-of-

the-art language models, we find the byte-level tokenization

scheme may indeed provide additional privacy protection by

design. In the meantime, obfuscating sentence embeddings via

adversarial training or subspace projection may be a promising

direction for future studies as they can achieve more desirable

utility-privacy trade-off.

Limitations & Future Works. Although we have observed

some interesting differences in the security property of dif-

ferent language models, we are still not very clear about

how many other design choices, including the network depth,

learning algorithms and hyper-parameters, influence the corre-

sponding language model’s privacy level. We are interesting to

investigate these issues in a future work. Moreover, although

we provided preliminary study on four possible defenses, we

find none of them could achieve an optimal balance between

privacy and utility on downstream tasks. Also, due to the hard-

ware constraints, we have not evaluated the defense quality of

differentially private training techniques (e.g., DPSGD [7]).

We hope our work will draw more attentions from researchers

to conduct more in-depth study on the privacy properties of

this new NLP paradigm and the corresponding mitigation

approaches.

IX. CONCLUSION

In this paper, we design two novel attack classes, i.e.,

pattern reconstruction attacks and keyword inference attacks,

to demonstrate the possibility of stealing sensitive information

from the sentence embeddings. We conduct extensive evalu-

ations on eight industry-level language models to empirically

validate the existence of these privacy threats. To shed light

on future mitigation studies, we also provide a preliminary

study on four defense approaches by obfuscating the sentence

embeddings to attenuate the sensitive information. To the best

of our knowledge, our work presents the first systematic study

on the privacy risks of general-purpose language models, along

with the possible countermeasures. For the future leverage

of the cutting-edge NLP techniques in real world settings,

we hope our study can arouse more research interests and

efforts on the security and privacy of general-purpose language

models.
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APPENDIX

A. Implementation of Utility Models

Fig. 8. Utility of benchmark systems on (a) Genome and (b) Medical.

1) Genome: We implemented eight genome classification

systems for splice site prediction based on a public genome

dataset called HS3D (Homo Sapiens Splice Sites Dataset) 2.

Roughly speaking, splice site prediction is a binary classifica-

tion task in computational genetics which determines whether

the target nucleotide sequence contains certain functional unit.

To build the benchmark systems, we first prepared a dataset

from HS3D that consists 28800 (2880) negative (positive)

samples for training and 1000 (1000) samples for testing.

All the genome sequences are of length 20. Each system

is composed with a pretrained language model for feature

extraction and a three-layer MLP of 200 hidden units with

sigmoid activation for classification. Fig. 8(a) reports the utility

(in accuracy) of our benchmark system when incorporating

different language models, where the non-trivial margin over

the random guess demonstrates their effectiveness.

2) Medical: We implemented eight pre-diagnosis systems

based on the CMS public healthcare records 3. These sys-

tems are designed to guide patients to the proper department

according to the textual description of their decease. The pre-

processed dataset contains 120, 000 decease descriptions from

10 medical departments (e.g., Orthopedic Surgery, Anesthesi-

ology, Dermatology and so on). We model the pre-diagnosis

task as 10-class classification, and implemented the systems as

a combination of the pretrained language models for feature

extraction and a three-layer MLP of 200 hidden units with

sigmoid activation for classification. First, the classification

2http://www.sci.unisannio.it/docenti/rampone/
3https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-

Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-
Supplier2016.html

1328

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 06,2020 at 05:07:59 UTC from IEEE Xplore.  Restrictions apply. 



accuracy in Fig. 8(b) highly demonstrates the utility of our

benchmark systems.

B. Implementation Details of Attack Model on Genome

In practice, we find training an attack model targeted on

the i-th nucleotide is ineffective if we only use the pairs

of embeddings and the corresponding nucleotide types. We

speculate it is probably because the training sample itself

contains insufficient information. Consider the example of

sequence ACGTAACT and the attacker targeted at the fourth

nucleotide. If we only supply the learning model with its

embedding and the type T , the attack model has actually

no idea of whether the learning objective is to infer the T
at the target position, or the T at the tail. To solve this

problem, we propose to augment the training pair (z, wi) with

auxiliary information regarding the target position, in the form

of positional for the target position i.
Basically, we concatenate the embedding z of the generated

sample with the positional embedding pi for position i. For-

mally, we use the sinusoidal positional embedding as in [72],

which is defined by pi,2k = sin (i/100002k/dpos), pi,2k+1 =
cos (i/10000(2k+1)/dpos), where pi,2k denotes the 2k-th coor-

dinate of pi and dpos is its dimension. In our implementation,

we set dpos equal to the dimension of z. Corresponding to

this modification, we implement one single attack model

for inferring the nucleotide type at any specified position.

Different from the Citizen case, this modification will not

increase the parameter number as the class number is still 4.

The attack model is implemented as a three-layer MLP which

takes input z ⊕ pi of dimension 2d and has 200 hidden units

with sigmoid activation and intermediate batch normalization

layers [32] for faster convergence. For training, we generate

mini-batches of size 128 that consist of tuples (z, pi, wi),
where the positional embedding i is randomly sampled from

the interval of possible positions (i.e. 1, . . . , 20). For inference,

the attacker inputs the victim’s embedding and the targeted

position and the model outputs the predicted nucleotide type.

C. Omitted Details on Defenses

Laplace Mechanism. For the second defense, we leverage

a differential privacy approach for mitigation. Specifically,

we apply the Laplace mechanism introduced in [20] to pro-

tect the original embedding from privacy breaching. Roughly

speaking, the Laplace mechanism perturbs the embedding

coordinate-wise with samples from a Laplace distribution

whose parameters are determined by the �1-sensitivity of the

language models (denoted as f ). Formally, we propose the DP-

based defense as ẑ = Dlap,f,ε(z)
.
= z+(Y1, . . . , Yd) , where Yi

are i.i.d. random samples drawn from Lap(Δf/ε), the Laplace

distribution with location 0 and scale Δf/ε. Here Δf denotes

the �1-sensitivity of the language model, which is defined

as Δf = maxx,x′∈N|V|,‖x−x′‖1=1 ‖f(x) − f(x
′
)‖1 where

x
′
, x are sentences that are different only in one position.

Intuitively, the Laplace mechanism makes it harder for the

adversary to distinguish from the embeddings the difference

caused by alteration of one word, which thus defends both

the pattern reconstruction attack and keyword inference attack

in a straightforward way. In theory, it can be proved that

the language model with protection, i.e. Dlap,f,ε ◦ f is (ε, 0)-
differential private. In practice, we estimate the �1-sensitivity

of each language model by generating 10, 000 pairs of (x, x
′
)

by word substitution, querying the language models and cal-

culating Δf according to the definition. The numeric value

is provided in Table IV. However, there still exists many

theoretical challenges in bounding the errors of the estimated

L1 sensitivity, which will be a meaningful direction to pursue

in the future.

TABLE IV
ESTIMATED �1-SENSITIVITY OF EACH LANGUAGE MODEL & TIME COST

FOR QUERYING ONE TRAINING BATCH

Name Estimated Δf Query Time (sec.)

Bert 81.82 0.577
Transformer-XL 17.09 3.691

XLNet 601.5 0.248
GPT 73.19 0.231

GPT-2 110.2 0.206
RoBERTa 4.15 0.184

XLM 219.4 0.223
Ernie 2.0 28.20 1.777

Privacy Preserving Mapping. We borrow the notion of a

Privacy Preserving Mapping (PPM) from [57] to denote a

mapping Dθ : R
d → R

d parameterized by θ, which is

trained to minimize the effectiveness of an imagined ad-

versary Aψ . Meanwhile, the PPM is required to follow the

utility constraint: it can only distort the embeddings in a

limited radius around the original embedding in order to

maintain the utility, or otherwise a trivial yet perfect de-

fense only needs to map all the embeddings to a constant

vector. Formally, we propose to learn the privacy preserv-

ing mapping Dθ by solving the following minimax game

minθmaxψ
1
n

∑n
i=1 Aψ(Dθ(zi), si), s.t. ‖Dθ(z)−z‖2 ≤ ε. In

other words, the active defense accesses the plaintexts {xi}ni=1,

derives the training set {(zi, si)}ni=1 for an imagined white-

box adversary, and simulates the minimax game as we describe

above. As the defense at the user side usually has no access

to the intelligent service at the cloud, the utility constraint is

formulated as the upper bound on the 2-norm distance between

the protected and original embeddings, which is similar to that

in [57]. In practice, Dθ is implemented as an encoder-decoder

neural network and Aψ is implemented as an MLP.
However, we notice an additional challenge brought by

the language model setting. Although previous PPM-based

defenses have studied several efficient approaches to solve

the minimax game when z takes discrete values and Dθ is

a combinatorial function [35], [57], our PPM is required to

work on the real-valued embeddings with Dθ implemented

as neural networks. By the best of our knowledge, there

is no effective algorithm to exactly solve the constrained

optimization problem above. As an alternative, we propose

to reformulate the L2 constraint as a regularization term.

In detail, it writes minθmaxψ 1/n
∑n
i=1 Aψ(Dθ(zi), si) +

λ‖Dθ(zi)− zi‖2, where the positive coefficient λ is expected

to control the privacy level of this active defense. Intuitively, a

larger λ corresponds to a stricter utility constraint and thus, a
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lower privacy level. To solve the unconstrained minimax game,

we use the simultaneous Gradient Descent algorithm, which

takes alternative gradient descent (ascent) steps on θ and ψ
[26].

Subspace Projection. Similar to the methodology in [14],

our defense first calculates the privacy subspace w.r.t. the

semantic meaning we do not want the adversary to distinguish.

Specifically in the setting of keyword inference attack, we ex-

pect the adversary is unable to distinguish whether a sentence

contains certain keyword or not. Therefore, we first collect two

sets of embeddings D1 and D0 that respectively correspond to

sentences with and without the target keyword. Then we com-

pute the privacy subspace as the linear space spanned by the

first k orthonormal eigenvectors u1, . . . , uk of the following

matrix C =
∑
i∈{0,1}

∑
z∈Di

(z − μi)(z − μi)
T /|Di| where

μi =
∑
z∈Di

z/|Di|, i.e. the average sentence embedding in

Di. In our evaluations, we consider the ratio β between the

dimension of the privacy subspace k and the full dimension d
of the sentence embedding as the parameter of the subspace
defense, i.e., β = k/d.

Next, to remove the unwanted semantics from the embed-

ding (denoted as z), we simply project the embedding to

the subspace orthogonal to the privacy subspace, with the

following formulas: ẑ ← ∑k
i=1(I − viv

T
i )z, ẑ ← ẑ/‖ẑ‖.

Evaluation Details. For PPM defense, we implement the

virtual adversary Aψ as a 3-layer MLP with 200 sigmoid

hidden units and the PPM Dθ as an MLP of the architecture

(d − 200 − d) with ReLU activation. We train the virtual

adversary and the PPM alternatively for 1 and 5 iterations,

where the batch size is set as 64.

D. Fingerprinting Algorithm

We propose the following fingerprinting algorithm to relax

Assumption 1, with 100% accuracy on determining the specific

model type. First, the adversary determines the candidate

model types according to the embedding dimension. For ex-

ample, if d = 768, the candidate set includes GPT, GPT-2 and

other three models. Next, the advervsary prepares an arbitrary

corpus and queries each language model for the embedddings.

Then, the adversary trains an off-the-shelf classifier with the

embedding as input and the model type as label. Finally, when

the adversary gets a set of embeddings as victims, he/she first

uses the language model classifier at hand to determine the

model type and conducts the downstream attacks as introduced

in previous sections.

Fig. 9. Clustering phenomenon observed on (a) embeddings from 5 784-dim.
language models and (b) their MLP hidden representations of 1000 randomly-
sampled sentences on Medical.

TABLE V
INFERRED TOP-10 POSSIBLE KEYWORDS IN EACH SAMPLE FOR

REASSEMBLING THE SEMANTICS.

Sample #1. Destruction of malignant growth (1.1 to 2.0 centimeters) of trunk, arms, or legs
arm, trunk, malignant, repair, venous, skin, veins, lower, removal, artery

Sample #2. Application of ultraviolet light to skin
venous, veins, centimeters, radiation, older, guidance, arm, removal, arterial, injection

Sample #3. Removal of malignant growth (1.1 to 2.0 centimeters) of the trunk, arms, or legs
arm, trunk, malignant, repair, venous, veins, artery, removal, tissue, insertion

Sample #4. Removal of up to and including 15 skin tags
veins, centimeters, tissue, removal, insertion, arms, spinal, arterial, skin, legs

Sample #5. Biopsy of each additional growth of skin and/or tissue
lower, venous, veins, biopsy, tissue, insertion, centimeters, artery, endoscope, ultrasound

To evaluate our fingerprinting algorithm, we implement the

language model classifier as a (784-200-5) MLP, use the Yelp-

Food corpus of 2000 sentences for training and a subset of the

Medical corpus that consists of 1000 sentences for testing.

Strikingly, we find the classifier achieve 100% accuracy.

To better understand the phenomenon, we plot the original

embeddings in the test set and their hidden representations

at the last layer of the MLP in Fig. 9, where different

colors implies different language models. As we can see, the

embeddings from different language models distribute in rather

divergent ways. After MLP’s nonlinear mapping, the embed-

dings directly collapse to separated clusters according to their

corresponding model type. To the best of our knowledge, we

are the first to discover and report this interesting phenomenon.

E. Semantic Reassembling with Keyword Inference Attack

Experimental Settings. Following the description in Sec-

tion VIII, we first select 50 medical-related words to form

the candidate keyword set and train an DANN attack model

for each keyword with the same configurations in our original

work. The DANN attack accuracy is about 77% after being

averaged on the 50 words. Then, we randomly select 5 samples

from the test set of the medical case and use each DANN

model to output the probability of the occurrence of the

corresponding keyword. We list the inferred Top-10 keywords

of each sentence in Table V.

Results & Analysis. As we can see from Table V, the

attacker can actually reassemble the basic semantic meaning

of the original text with such a procedure. For example, in

Sample #3, when the adversary knows arm, trunk, malignant
as the Top-3 most possible keywords, then he/she can probably

infer the semantic meaning of the original description is related

with malignant growth at the arms or trunk. Compared with

the plain text of Sample #3, the inferred meaning is quite

consistent with the original meaning, despite some minor

details left out. Interestingly, we also find, although DANN

may predict the occurrence of certain keywords with error,

the erroneous prediction may also contribute to the semantic

reconstruction. For example, in Sample #2, the adversary fails

to predict the occurrence of ultraviolet since this word is

not in the adversary’s candidate set. However, due to the

semantic similarity between ultraviolet and radiation 4, the

DANN attack model for radiation predicts the high probability

40.942 in cosine similarity of Bert word embeddings.
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Fig. 10. The training loss of LSTM decoder and attack accuracy of decoder-
based attack in the first 5 epochs.

of the occurrence of the word radiation, which, despite the

inexactness, helps the adversary successfully guess that the

hidden semantic is about the radiation-related procedure, i.e.,

the application of ultraviolet light.

F. Keyword Inference Attack with Standard Decoder Section

Experimental Settings. We use the standard decoder mod-

ule [68], a one-layer bidirectional LSTM to implement the

decoder. The vocabulary of the LSTM is initialized the same

as the target language model. For most of them (excluding

XLNet and ERNIE), the vocabulary is publicly accessible. We

therefore implement the decoder-based attack on the rest 6
targets.

For training, we input the decoder both the embedding

and the corresponding sentence: the embedding is input as

the initial hidden state of the LSTM forwarding phase, while

the sentence supervises the generated tokens in a teacher-

forcing way [25]. During the evaluation phase, we input the

victim embedding as the initial hidden state to the LSTM

decoder and decode the tokens greedily. For background on

training and evaluating such an LSTM module for generating

sentence conditionally, please refer to e.g., [68]. To conduct the

keyword inference attack, we suppose the adversary directly

tests whether the keyword is contained in the generated

sentence. We conduct the decoder-based keyword inference

attack on Medical in the white-box setting, with exactly the

same configurations of the dataset. Fig. 10 reports the training

loss and the keyword inference attack accuracy in the first 5
epochs. We omit the results for Transformer-XL because the

decoder cannot be trained on a 11G GPU due to the large

vocabulary containing over 220, 000 tokens.

Results & Analysis. As we can see from Fig. 10, for the

LSTM decoder on each language model we experiment with,

the training loss decreases to almost 0 in the first several

epochs. In the console logs, we correspondingly observe

that, when the loss is close to 0, the decoded sentences

in the training set is almost identical to the original ones.

However, when applied to decode from the embedding without

teacher-forcing, the decoder is observed to fail to decode any

meaningful sentences, always giving a sequence of repetition

of certain random word. As a result, none of the decoder-based

attacks work out better than a random guesser.

G. Experimental Environments

All the experiments were implemented with PyTorch [51],

which is an open-source software framework for numeric com-

putation and deep learning. We used the pretrained language

TABLE VI
THROUGHPUT FOR TRAINING ATTACKS IN EACH CASE (ITER/SEC.)

Citizen
Genome

Airline/Medical

Year Month Date SVM MLP DANN

187.9 228.2 213.7 311.2 7209.6 352.3 316.8

models implemented by PaddlePaddle5 (for Ernie 2.0) and by

HuggingFace [74] (for other seven models). We deployed the

language models on a Linux server running Ubuntu 16.04, one

AMD Ryzen Threadripper 2990WX 32-core processor and 2

NVIDIA GTX RTX2080 GPUs. We conducted our attacks

and defenses on a Linux PC running Ubuntu 16.04, one Intel

Core i7 processor and 1 NVIDIA GTX 1070 GPU, querying

the server via local network. We report the time for quering

one mini-batch of training data in Table IV.

H. Other Omitted Statistics

TABLE VII
BASIC INFORMATION OF THE THREE VARIANTS OF GPT-2 ARCHITECTURE

WE HAVE USED FOR ABLATION STUDIES.

Name Dimension # of Parameters

GPT-2 768 1.2× 108

GPT-2-Medium 1024 3.5× 108

GPT-2-Large 1280 7.7× 108

TABLE VIII
STATISTICS OF TEST SAMPLES FOR EACH KEYWORD ON AIRLINE &

MEDICAL

Airline

Hong Kong London Toronto Paris Rome

808 2656 1320 948 736

Sydney Dubai Bangkok Singapore Frankfurt

1434 802 1260 1264 586

Medical

leg hand spine chest ankle

19804 3700 6222 3172 1252

head hip arm face shoulder

4988 2612 18600 3938 2592

I. Learning Algorithm for DANN Attack

5https://github.com/PaddlePaddle/ERNIE
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