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ABSTRACT

Fuzzing is one of the most popular and practical techniques for
security analysis. In this work, we aim to address the critical prob-
lem of high-quality input generation with a novel input-aware
fuzzing approach called NestFuzz. NestFuzz can universally and
automatically model input format specifications and generate valid
input.

The key observation behind NestFuzz is that the code seman-
tics of the target program always highly imply the required input
formats. Hence, NestFuzz applies fine-grained program analysis
to understand the input processing logic, especially the dependen-
cies across different input fields and substructures. To this end, we
design a novel data structure, namely Input Processing Tree, and a
new cascading dependency-aware mutation strategy to drive the
fuzzing.

Our evaluation of 20 intensively-tested popular programs shows
that NestFuzz is effective and practical. In comparison with the
state-of-the-art fuzzers (AFL, AFLFast, AFL++,MOpt, AFLSmart,
WEIZZ, ProFuzzer, and TIFF), NestFuzz achieves outperformance
in terms of both code coverage and security vulnerability detection.
NestFuzz finds 46 vulnerabilities that are both unique and serious.
Until the moment this paper is written, 39 have been confirmed
and 37 have been assigned with CVE-ids.
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1 INTRODUCTION

Fuzzing is an effective software testing technique that has been
broadly applied in exploring and vetting software security with
continuous input generation. It has proven useful and powerful
in discovering numerous perilous vulnerabilities [12, 41]. One key
challenge faced in the fuzzing procedure is generating a large num-
ber of effective inputs, which can be accepted by the target program
and help explore as many paths as possible and hunt the vulnerabili-
ties hidden in the deep. In past years, barrelful fuzzing tools applied
input-agnostic mutation or generation strategies and usually gener-
ated tremendous invalid test cases, which were often rejected early
by shadow code, e.g., input sanitizer and validations.

For smart and effective fuzzing, it is critical to learn the knowl-
edge of input formats and requirements, especially when targeting
real-world programs (often characterized by nested and structured
input). Consider a typical real example of a popular MP4 multime-
dia player, which accepts binary MP4 files as input and contains
a zero-day heap-based buffer overflow vulnerability. As the MP4
input format specifications are complicated, Figure 1 partially sim-
plifies a crucial input structure of MP4.We find inside MP4, its input
fields are arranged and organized structurally and hierarchically.
Specifically, the outermost moof structure groups the type, length,
and payload input fields. This means, the interpretation of payload
highly depends on its type and length. The payload field contains
two mfhd and traf substructures (i.e., field group), while traf is
nested with another two tfhd and sdtp substructures. These sub-
structures include their own fields, such as smp_cnt and smp_info
in sdtp. Please note that substructures may be freely combined and
grouped. Considering there are more than 500 MP4 substructure
types available in practice, the input format space is quite large.
It is not easy to generate such a vulnerable input and find the
vulnerability along with a much longer path.

https://doi.org/10.1145/3576915.3623103
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Figure 1: Simplified Partial Input Format of MP4, in which

the smp_info field could carry the attack payload.

Generally, the in-depth understanding of input formats brings
two important merits: (i) For path exploration, the knowledge of
input formats can help cover as much code as possible by gener-
ating valid inputs, that satisfy the target program’s input format
specifications; (ii) For security exploitation, whose focus shifts to
finding deep vulnerabilities, the understanding of input formats can
guide the generation of ill-formed valuable input, helping hit the
unexpected paths but still satisfy the input validations. However,
achieving such a promising goal is not an easy task.

Recently, several fuzzing tools [17, 20, 31, 35, 43] were proposed
and aimed to be aware of input formats. Nevertheless, they pri-
marily focused on recognizing individual fields, while neglecting
the hierarchy of input fields as well as substructures. In particu-
lar, ProFuzzer [43] and AIFORE [35] learned the boundaries and
types of individual fields using statistical analysis or neural network
models. However, they faced difficulties to obtain the landscape
of the nested and structured input format. Their input mutation
strategies conducted the changes in the single-field level, but hardly
satisfied critical dependencies between different fields as well as
hierarchy structure — for example, the generated sdtp substructure
should be adjacent to a tfhd substructure, while these two sub-
structures should be parts of another traf substructure (Figure 1).
WEIZZ [17] primarily focused on the automatic identification of
fields and chunks within chunk-based file formats, but neglected
to take into account the inter-field dependencies and the input
hierarchy structure. Furthermore, some other tools [7, 31] utilized
pre-learned knowledge, i.e., input format template, that is manually
defined based on the documentation of format specifications. On
the one hand, many target programs (e.g., MP4 programs) have
complicated input format specifications, thus requiring heavy man-
ual efforts for format template construction. On the other hand,
we observe these specifications frequently diverge from real-world
code implementation, resulting in the inaccuracy of the format
templates and impacting the detection outcomes.

In general, current format-aware fuzzing tools lacked a com-
prehensive understanding of input formats. This led to their input
generation failing to meet program requirements, and was ineffec-
tive in exploring complex real-world programs, thereby failing to
trigger deep vulnerabilities. For the purpose of verification, we have
chosen several open-source state-of-the-art fuzzing tools, e.g., Pro-
Fuzzer [43] and AFLSmart [31], against the MP4 program, detailed
in Section 2. Our analysis confirms existing tools faced challenges
in learning the vulnerable input format (Figure 1) and generating
harmful input. This is also verified in our evaluation on a board of
data sets.

In this work, we propose a novel smart fuzzing approach, called
NestFuzz, against the daunting problem of thoroughly learning
the knowledge of input formats, and utilizing this knowledge to
facilitate effective fuzzing. The main insight behind our NestFuzz

approach is that the knowledge of input formats is generally implied
by the interpretation and execution (referred to as input process-
ing logic) of the tested program’s input-accessing instructions, i.e.,
the instructions that depend on input data in terms of data-flow.
Therefore, we can learn the input format knowledge of the target
program, by analyzing and modeling its input processing logic.
Beyond identifying individual fields in the input raw data, our mod-
eling of input processing logic should additionally capture two
important traits of input structure:

• Inter-Field Dependency. As an example of a field-level
dependency, the length field of an MP4 moof substructure
is used in a loop termination condition, for controlling the
reading of its payload field, e.g., ‘for (..; i < length; ..) buffer[i]
= payload[i]’. Once length is changed, the interpretation of
payload will also be adjusted, i.e., its actual length should be
equal to length. Hence, the length and payload fields should
be grouped together.

• Hierarchy Dependency. Another more complicated fea-
ture is the inference of the substructure hierarchy. Corre-
spondingly, programs may use recursive logic, e.g., loop
and recursive function call, when executing input-accessing
instructions, for reusing specific code logic of processing
similar structures. For example, moof ’s payload field con-
sists of several different substructures, e.g., traf. Like moof,
traf can similarly nest other substructures, they are parsed
and dealt with by the same function.

Upon the above key insight, NestFuzz conducts smart fuzzing by 1)
learning the knowledge of input formats from the interpretation and
modeling of input processing logic, and 2) proposing and applying
a novel knowledge-guided mutation strategy. Specifically, in the ini-
tial phase,NestFuzz first identifies the input-accessing instructions,
by employing dynamic taint analysis on input raw data. An instruc-
tion involving a tainted operand is classified as an input-accessing
instruction. Then, NestFuzz interprets and models the input pro-
cessing logic from these collected input-accessing instructions. To
achieve this goal, NestFuzz proposes a novel data structure, called
Input Processing Tree, to accommodate and represent input process-
ing logic. Importantly, Input Processing Tree can guide the modeling
of input processing logic from several perspectives, including the
dependencies of field-to-field and substructure-to-substructure.

In the second phase, based on Input Processing Tree, NestFuzz
designs a novel cascading dependency-aware mutation strategy.
In general, during path exploration, when NestFuzz mutates a
part of the input seed’s structure, it traverses the Input Processing
Tree to find and adjust all other fields or substructures that depend
(i.e., the inter-field and hierarchy dependencies) on this part, thus
keeping the input structure remain valid. Furthermore, for secu-
rity exploitation, NestFuzz prioritizes mutating newly-discovered
and deeply-nested substructures to trigger the deep vulnerabili-
ties. Since the deeply-nested substructures correspond to the deep
processing logic in the program, prioritizing mutating these sub-
structures can help trigger the deep bugs while ensuring the shallow
processing logic is not violated.

We implement our prototype of NestFuzz and evaluate its
effectiveness using the benchmark of 20 intensively-tested real-
world programs. Our benchmark comprehensively encompasses 12
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frequently-used binary file formats and 6 non-binary file formats.
As a result, NestFuzz unveiled 46 unique vulnerabilities. We have
responsibly disclosed them to the corresponding developers. Up
to now, 39 have been confirmed and 37 have been assigned with
CVE-ids (detailed in Section 5.3). We compared NestFuzz with the
state-of-the-art structure-aware fuzzers, including AFLSmart [31],
WEIZZ [17], ProFuzzer [43] and TIFF [20], and structure-unaware
but general fuzzers, including AFL [30], AFLFast [10], AFL++ [18],
and MOpt [28], on the above benchmark. The results show that
NestFuzz outperforms the state-of-the-art fuzzers in terms of both
test coverage and security vulnerability detection. For example, in
comparison to structure-aware tools, e.g., WEIZZ, our tool iden-
tifies 1.56 times more unique lines and 1.67 times more unique
branches. Compared with structure-unware tools, e.g., AFL++, our
tool identifies 1.3 times more unique lines and 1.31 times more
unique branches.

In summary, our contributions are outlined as follows:
• In this work, we focus on the daunting problem of a compre-
hensive understanding of input processing logic, and propose
a novel fuzzing technique, called NestFuzz1.

• With the novel design of structural representations for input,
NestFuzz can effectively model input structure, including
the hierarchy of fields and substructures.

• NestFuzz applies a cascading dependency-aware mutation
strategy to adequately explore the input space and the code
space of the program.

• Our evaluation shows NestFuzz outperforms the state-of-
the-art fuzzing tools in both program exploration and secu-
rity verification and finds 46 unique vulnerabilities, 37 of
which have been assigned with CVE IDs.

2 MOTIVATING EXAMPLE

In this section, we follow the discussion of Section 1 and detail the
representative real-world example of the popular MP4 parser. We
break up our key insight that the input processing logic implies
the input format and also discuss the limitations faced by existing
tools. The MP4 program contains a dangerous zero-day heap-based
buffer overflow vulnerability. We have responsibly reported this
new vulnerability to the program developers and actively helped
them fix this issue. Up to now, the vulnerability has been confirmed
by the program developers and issued with a CVE ID.

As discussed in Section 1, it is not easy to trigger the vulnera-
bility. The input format of its exploit has been shown in Figure 1.
Please note that the presented input format is automatically inter-
preted and extracted from code implementation, rather than the
MP4 format specification documentation. This is mainly because
the specification documentation has many inconsistencies with
real-world code implementation. Figure 2 shows the simplified re-
lated code snippet. The key vulnerable instruction appears at line
9 in the function parse_boxes_internal(). This function is used to
parse the raw MP4 file with a loop (lines 3-10) recursively dealing
with various MP4 substructures that have similar input field lay-
outs. It calls box_parse_ex() (line 4) to extract the content of each
substructure. Inside box_parse_ex() (line 11 of box_funcs.c), each

1We will open-source the prototype of NestFuzz at https://github.com/fdu-sec/
NestFuzz
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    while (parent->length>=8) {

    GF_Box *a = NULL;

    GF_Err e;

GF_Err box_array_read(GF_Box *parent, GF_BitStream *bs){

40

}

39

38

37

36

    ...

GF_Err sdtp_read(GF_Box *s, GF_BitStream *bs) {

35

}

34

33

32

}

17

9                     //Heap Buffer Overflow

                if (traf->sdtp) { //SDTP box in TRAF box8

7                 TrackBox *traf = list_get(a->TrackList, ...);

            case BOX_MOOF: //MOOF box6

5         switch (a->type) {

4         e = box_parse_ex(&a, mov->bs, ...);

    while (bs_available(mov->bs)) {3

2     GF_Box *a;

1 GF_Err parse_boxes_internal(GF_ISOFile *mov, u32 *boxType) {

}16

15     *outBox = newBox;

14     newBox->registry->read_fn(newBox, bs); //=moof_read...

13     GF_Box *newBox = box_new_ex(type, ...);

12     u32 type = gf_bs_read_u32(bs);

11 GF_Err box_parse_ex(GF_Box **outBox, GF_BitStream *bs,  ...) {

23 }   }

22         ...

        e = box_parse_ex(&a, bs, ...);21

20

18

26

        return GF_ISOM_INVALID_FILE;

    GF_Err e = box_array_read(ptr, bs);

}   }

24

25

GF_Err tfhd_read(GF_Box *s, GF_BitStream *bs) {

19

30

27

    if (!ptr->tfhd) {

28

GF_Err traf_read(GF_Box *s, GF_BitStream *bs) {

GF_Err moof_read(GF_Box *s, GF_BitStream *bs) {

    ...

29

GF_Err mfhd_read(GF_Box *s, GF_BitStream *bs) {

    ...

    return box_array_read(s, bs);

}

    TrackBox *ptr = (TrackBox *)s;31

}   }   }   }   }10

/* File: src/isomedia/isom_intern.c */

/* File: src/isomedia/box_funcs.c */

/* File: src/isomedia/box_code_base.c */

1

2

3

4

5

Figure 2: Motivating Example.
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Figure 3: Abstract Input Processing Logic of the Motivating

Example.

substructure, i.e., newBox, is parsed by the function pointer read_fn,
which is pre-configured according to the substructure type. For
example, a moof -type substructure is dealt with by the function
moof_read() (at line 24), while traf is handled by traf_read() (at line
30).

https://github.com/fdu-sec/NestFuzz
https://github.com/fdu-sec/NestFuzz
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For exploiting the heap vulnerability (line 9), the input data must
satisfy several important constraints guarding the key vulnerable
instruction. Figure 3 shows a pseudo-paradigm of the simplified
input processing logic, indicating how the input is interpreted and
validated. For example, the condition at line 6 requires the input
type field must be BOX_MOOF. This determines that the outermost
structure must be of moof. line 8 requires non-null traf and sdtp
pointers. Thus, there should be a traf substructure under moof
and another substructure sdtp under traf. line 33 needs a non-null
tfhd pointer, determining that traf must have a tfhd substructure
(otherwise the input will be rejected). In the sdtp, its smp_info field
can carry the essential malicious attack payload.

This input processing logic discovers the hierarchy dependencies
between substructures, and the demanded high-level structure of
input data. In addition to these hierarchy dependencies, there are
also dependencies between different fields. For instance, the type
field (line 12) determines how to interpret its following data. Its
value determines the function pointer read_fn at line 14. Conse-
quentially, different substructure handlers will be called, e.g., calling
moof_read() for the moof ) substructure. Furthermore, the length
field can determine the length of the payload field (line 20). Essen-
tially, it not only determines the boundary of the payload single
field, but also impacts the interpretation of the consecutive sub-
structures, e.g., the start bytes of the next substructure adjacent
the payload. Therefore, the inter-field dependencies should also be
respected in input generation and mutation.

Table 1: The Number of Inputs Generated by Existing Fuzzing

Tools for the Motivating Example.

Fuzzer Input Num ➊ ➊➋ ➊➋➌ ➊➋➌➍ ➊➋➌➍➎

AFL [30] 1,436 65 1 0 0 0
AFLFast [10] 2,958 68 1 0 0 0
AFLSmart [31] 11,297 40 3 0 0 0
WEIZZ [17] 32,385 0 0 0 0 0
ProFuzzer [43] 9,688 8 0 0 0 0
TIFF [20] 99 0 0 0 0 0
NestFuzz 24,949 955 842 457 401 3

Applying Fuzzing.When a smart and effective fuzzer satisfies the
inter-field and hierarchy dependencies, the called edges ➊➋➌➍➎

(Figure 3) should be traversed and executed sequentially. Thismeans
the input data is organized in a correct structure (Figure 1), and
parsed recursively. However, when applying the state-of-the-art
open-source input format-aware fuzzing techniques (e.g., AFLS-
mart and ProFuzzer) against this common example (with 24-hour
timeout for each tool), we find existing tools produce numerous in-
valid inputs and face difficulties in constructing the required input
structure (Figure 1). Table 1 presents the number of the generated
inputs of each fuzzing tool, which can reach and enter the substruc-
ture handler functions (e.g., read_fn() at line 14). The input number
greatly decreases as the input processing logic executes deeply.
As a result, existing techniques are only able to explore up to the
first two levels of nested logic, i.e., moof_read() and mfhd_read(),
significantly hindering their effectiveness and practicality.

The reason is that previous work either did not satisfy the con-
straints of inter-field dependencies or hierarchy dependencies. The

test cases they generate frequently destroy the initial valid input
format, which is inadequate to trigger the deep vulnerability. For
example, when a field, such as the moof type at lines 5 and 6, is
changed and mutated to BOX_MOOF, its consecutive field content
must be adjusted as well for totally conforming to the moof’s struc-
ture. Since existing fuzzers will not introduce such an adjustment,
the newly generated seeds commonly are invalid.

To tackle this problem, critical is learning the knowledge of in-
put formats. As discussed above, this knowledge is implied by the
input processing logic. Therefore, NestFuzz first understands the
comprehensive structure (i.e., the inter-field and hierarchy depen-
dencies) of input formats by modeling input processing logic, then
uses the learned knowledge to guide the fuzzing. We present more
details in the next two sections.

3 NESTFUZZ OVERVIEW
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Figure 4: The Overall Architecture of NestFuzz.

In this work, we address the daunting problem of understanding
and awareness of input formats, with proposing a new universal in-
put format-aware fuzzing approach, namedNestFuzz. As discussed
in Section 1 and 2, the key intuition behind our NestFuzz approach
is straightforward. Regardless of what specific input format a pro-
gram requires, the code semantics of the target program, i.e., input
processing logic, often accurately implies the knowledge of the
demanded input format. Thus, generally, NestFuzz can first learn
the knowledge of input formats by interpreting and modeling the
input processing logic, and then leverage the obtained knowledge
to guide effective fuzzing.

As shown in Figure 4, our NestFuzz approach mainly includes
two phases. In the first phase of input processing logic modeling,
NestFuzz first leverages taint analysis to identify input-accessing
instructions. Then, NestFuzz recognizes the inter-field dependen-
cies and hierarchy dependencies by understanding the control- and
data-flow relationships between these input-accessing instructions.
Last, NestFuzz proposes a novel data structure, namely Input Pro-
cessing Tree, that can represent the whole structure of the input
format.

In the second phase of fuzzing, NestFuzz designs a cascading
dependency-aware mutation strategy. Based on the recognized de-
pendencies, whenever NestFuzz mutates (field or structure-level)
the input, it cascadingly mutates other affected fields or substruc-
tures to maintain the structure validity. Therefore, NestFuzz can
continuously and effectively generate new high-quality test cases.
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It is worth noting that the phase of input format modeling runs
concurrently with the fuzzing procedure. The high-level process
is presented in Algorithm 1. On the one hand, our scheduler con-
sistently picks an input from our input queue, and then utilizes
this input to drive the generation of Input Processing Tree. The
fuzzer, on the other hand, continuously conducts a cascading muta-
tion against the picked input based on Input Processing Tree, and
performs dependency-aware fuzzing.

Algorithm 1 NestFuzz Fuzzing Procedures
Input: program, initial inputs
Output: a set of inputs
1: Q = {initial inputs}
2: S = Empty map
3: procedure inputProcessingLogicModeling(program)
4: program_s = Instrument(program) ⊲ Algorithm 2
5: while not timeout do
6: input = Schedule(Q \ S.keys())
7: IPT = IPTAnalysis(program_s, input)
8: S[input] = IPT
9: procedure Fuzz(program)
10: program_c = AFLInstrument(program) ⊲ AFL instrumentation
11: while not timeout do
12: input = Select(Q)
13: IPT = S[input]
14: if IPT then

15: p = AssignEnergy(input)
16: for i from 1 to p do

17: input’ = CascadingMutation(input, IPT)
18: run(program_c, input’)
19: if input’ has new coverage then
20: Q.add(input’)

4 METHODOLOGY

In this section, we dive into the methodology of our NestFuzz
approach with two essential analysis phases of modeling input
processing logic and fuzzing with dependency-aware mutation.

4.1 Definitions

Belowwe define the terms frequently used in the remaining content.

Definition 1. A field F consists of a set of consecutive bytes.
F usually has several properties, including its start and end byte
position in raw data, its concrete value, and field type. Hence, F =
{
⋃𝑒𝑛𝑑

𝑠𝑡𝑎𝑟𝑡 𝑏𝑦𝑡𝑒𝑖 , 𝑣𝑎𝑙𝑢𝑒, 𝑡𝑦𝑝𝑒}.

Definition 2. A substructure SF consists of a set of continuous
fields or other substructures. Thus, 𝑆𝐹 =

⋃
𝑖, 𝑗 (𝐹𝑖 |𝑆𝐹 𝑗 ).

Definition 3. A field 𝐹1 may depend on another field 𝐹2, if
changing a property (e.g., value) of the field 𝐹2 can affect the parsing
of another field 𝐹1. We use 𝐷 [𝐹1, 𝐹2] to represent the dependency
between 𝐹1 and 𝐹2.

4.2 Modeling Input Processing Logic

As discussed in Section 1 and 2, it is essential to analyze and model
the input processing logic, achieving an in-depth understanding of
the two crucial traits of input structure: the inter-field dependency
and the hierarchy dependency. The input processing logic encom-
passes the instructions on how a program reads, interprets, and
validates its inputs. Therefore, we take into account not only the
syntax and format of the input data but also the control-flow and

data-flow level dependencies between the instructions that process
the input.

In this section, we detail our NestFuzz approach in the first
phase of modeling the input processing logic. In general, NestFuzz
first identifies the input-accessing instructions through dynamic
taint analysis. Then, NestFuzz infers the inter-field dependencies
and hierarchy dependencies respectively. Last, NestFuzz proposes
the novel data stricture Input Processing Tree to accommodate the
input processing logic. Below we present the details for each step.

4.2.1 Identifying Input-Accessing Instructions. Input-accessing in-
structions are the ones that involve input raw data. To identify
input-accessing instructions, we utilize dynamic taint analysis on
the input source and pinpoint instructions responsible for process-
ing the input. Our taint analysis is conducted at the byte level based
on DFSan [5]. In particular, we label all the input bytes as ‘tainted’
and assign a tainted label ‘shadow_value’ (e.g., offset in raw input
data) to each input byte and trace their propagation. When a vari-
able is assigned with taint labels, we can retrieve the input bytes
flowing to the variable from the labels. Thus, when an instruction
involves a tainted operand, it can be classified as an input-accessing
instruction.

In this procedure, we focus on three types of input-accessing
instructions, i.e., Load, Cmp, and Switch. We instrument these
instructions to keep track of their instruction addresses and their
operands’ taint tags, which indicate the offsets of the corresponding
input fields. Furthermore, an instructionmay executemultiple times
with different contexts and therefore different taint tags. We record
each instance separately.

4.2.2 Recognizing Inter-field Dependencies. Input-accessing instruc-
tions provide rich code semantics, which can be utilized to infer the
knowledge of input formats. In this step, we recognize key fields
(including length, offset, category, and payload) and infer the depen-
dencies between them. In general, our analysis mainly considers
three types of inter-field dependencies that significantly impact
the input structure, i.e., D[payload, length], D[payload, offset] and
D[payload, category]. It is worth noting that the payload field is
often structured, nesting other fields or substructures. Below we
present the details for each type of inter-field dependency.

• D[payload, length]: The length field can determine the length of
another payload field. We recognize these ‘length’ and ‘payload’
fields and their dependency, based on the following code semantics.
First, the length field may be used as a parameter of buffer-related
system APIs. Use the following cases as an example. The parameter
in the corresponding position is of the length type. Thus, we can
further determine the payload variable and link them together,
obtaining 𝐷 [𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑙𝑒𝑛𝑔𝑡ℎ]. We model the system APIs that may
have a tainted variable as its parameter. If a tainted variable is used
as the corresponding parameter of some APIs that have a length
type parameter, we recognize the taint source as a length type field.
Additionally, from the API use, we can also infer the corresponding
field of payload.

read(handler, buffer, length) // read content
buffer = malloc(length) // allocate a buffer
memcpy(dst, src, length) // copy from src to dst

Second, the length variable may be used in a loop condition to
determine the iteration rounds of reading tainted data from input
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to a buffer. As the following code shows, we can link the length
and buffer variables together. Specifically, we recognize the tainted
variable in the loop condition as the length field type, and all related
tainted variables appeared in the loop body as parts of payload.

for (int i = 0; i < size; i++) {
buffer[i] = input[i];
...

• D[payload, offset]: The offset field indicates the position of another
field payload in the input raw data. Similar to the length type field,
the related systemAPI semantics imply the offset field and its related
payload variable. Use the following APIs as an example. We can
identify the corresponding (second) variable as the offset type if
the variable is tainted. Based on this, we can further recognize the
tainted buffer accessed after the API as the payload field.

fseek(stream, offset, whence)
lseek(file, offset, whence)

• D[payload, category]: The category field determines the type of
another field payload. Generally, when a different category value is
set up or changed, the structure of the corresponding payload is
totally different. The payload-parsing process dramatically varies.
For example, as shown in our motivating example, the type field
𝑏𝑜𝑥→𝑡𝑦𝑝𝑒 determines the parsing logic against the buffer𝑏𝑜𝑥→𝑑𝑎𝑡𝑎.
Thus, when fuzzing the target program, the field category and its
payload structure should be thoroughly understood and identified.
As the following code shows, the category field often appears in
condition statements, e.g., if-else and switch-case.

if (category == type1) {
e = buffer[8] + buffer[12]
...

} else if (category == type2) {
...

Therefore, we design the following strategies to identify the
category and payload fields. First, if a tainted variable appears in
conditional checks, for example, in the compare and switch instruc-
tions, the variable may be of a category field. Please note that in
the two operands of the conditional instruction, only one operand
should be tainted. This means, the other operand should be a con-
stant or untainted value. Therefore, for such a case, we can group
related operands (e.g., type1 and type2) of the conditional checks
at the same layer (the if-else or switch-case structure) as the value-
selection set for such a category field. Second, for each branch body,
we collect and group tainted variables. Similar to how we deal with
the loop body, these tainted variables are saved in a temporary
list, which will be dealt with in the next stage to construct the
corresponding payload.

4.2.3 Recognizing Hierarchy Dependencies. As presented in Section
2, multiple fields in the input can be grouped into a substructure,
while substructures and fields can be further combined to form a
larger substructure. The core observation for identifying substruc-
tures is that programs often use recursive logic, such as loops and
recursive function calls, to process nested inputs. Thus, we can split
the whole input into small pieces by analyzing this recursive logic.
However, this is a challenging task as this logic often be re-used
to handle similar input structures with different contexts during
execution. For example, the substructures in the moof and traf
structure are all processed in the same function box_array_read at

Algorithm 2 Build Input Processing Tree
1: struct Node {type; start; end; child}
2: set api_set = {func1, func2, ...} ⊲ Data access related APIs
3: global IPT = NewNode(Func, 0, 0, ∅) ⊲ Input Processing Tree
4: global cur_node = IPT
5: function AddInnerNode(type) ⊲ Add inner node
6: node = NewNode(type, 0, 0, ∅)
7: cur_node.addChild(node)
8: cur_node = node
9: function AddLeafNode(operand) ⊲ Add leaf node
10: tag = getTaintTag(operand)
11: if tag then
12: node = NewNode(Load, tag.start, tag.end, ∅)
13: cur_node.addChild(node)
14: function RollBackNode
15: node = cur_node.parent
16: CalculateNodeBound(cur_node) ⊲ Update the start and end property
17: if cur_node.start == 0 and cur_node.end == 0 then
18: DeleteNode(cur_node)
19: cur_node = node
20: function Instrument(program)
21: for each BB in each Func do
22: for each Inst in BB do

23: if IsCallInst(Inst) then
24: Insert(Inst, AddInnerNode(Call))
25: if getCallee(Inst) in api_set then
26: log(Inst)
27: Insert(NextInst(Inst), RollBackNode())
28: else if IsLoopInst(Inst) then
29: Insert(Inst, AddInnerNode(Loop))
30: for each Iter in Inst do
31: Insert(Inst, AddInnerNode(Iter))
32: for each BB in getExitBlocks(Inst) do
33: Insert(getFirstInsertion(BB), RollBackNode())
34: else if IsSwitchInst(Inst) then
35: Insert(Inst, AddInnerNode(Switch))
36: else if IsCmpInst(Inst) then
37: Insert(Inst, AddInnerNode(Cmp))
38: else if IsLoadInst(Inst) then
39: Insert(Inst, AddLeafNode(getOperand(Inst)))

Line 17 in Figure 2. Thus, to precisely identify the substructures,
we should record every execution instance of this recursive logic.

To mitigate this, we design a novel data structure, namely Input
Processing Tree, that can help to record every operation launched by
the program on processing the input. Thus, it can identify different
substructures by recording the executions of recursive logic as well
as representing the input processing logic in the target program.
We define the crucial data structure Input Processing Tree as follows.

Definition 4. An Input Processing Tree is an ordered and rooted
tree. It consists of the instructions corresponding to the input pro-
cessing logic and their execution context. It has the following prop-
erties.

(1) An inner node is an instruction leading to other instructions.
It usually has three types: function prototype, branch, and
loop instructions. The sub-tree led by such an internal node
must involve tainted data.

(2) A leaf node is an input-accessing instruction whose operands
are tainted.

(3) A node is the child of another node (i.e., function/loop/branch
body) if the instruction is included in the corresponding
internal node.

(4) Any sub-tree contains a node involving tainted variables.
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Based on the above definition, we design a novel algorithm (Al-
gorithm 2) to construct the Input Processing Tree. In Algorithm 2,
we compute the start and end properties (i.e., the boundaries) for
each internal node in the Input Processing Tree. For nodes of type
Function, Loop, and Iteration, we consider their corresponding in-
put as a substructure, and their child nodes correspond to the fields
or substructures within the substructure.

In general, Input Processing Tree is generated and built online
during our taint analysis. An Input Processing Tree’s root node is
usually a ‘main’ function node. Then, each instruction is carefully
dealt with (Lines 20 to 39 of Algorithm 2). When encountering a
function call, we generate a new child node of the function type by
inserting a function call to AddInnerNode (Line 24). If the instruc-
tion’s callee is one of the APIs related to data access, we record
the inter-field dependency it represents (Line 26). After returning
from the function, we insert an instruction to call the RollBackNode
function (Line 27). This calculates the start and end properties of the
function node (Line 16) by traversing its children. Its start property
is the minimum value of all its children’s start properties, and its
end is the maximum end value of all its children. If the sub-tree led
by this function node does not have any leaf nodes that have taint
tags, resulting in both its start and end being 0, it will be removed.

For a loop block, we create a new child node of the loop type and
place it as a child of the corresponding function node being analyzed
at Line 29. Since the loop structure will be recursively executed and
parsed, we create a new node to represent each iteration and add it
under the loop node as a child node at Line 31. Similarly, we insert
an instruction to call the RollBackNode function (Line 33) after each
loop iteration exits.

For a cmp or a switch instruction to be analyzed, we create a
unique child node and add it as the child of the function or loop
being executed (Lines 35 and 37). For an input-accessing input in-
struction (e.g., load instruction), we create a new child node by
inserting a call instruction to the function AddLeafNode. This func-
tion extracts the taint information of the operator of the instruction
(Line 10) and creates a new leaf node at Line 12. Notice that, all the
leaf nodes are input-accessing instructions and any inner node in
Input Processing Tree should lead a sub-tree whose leaf nodes are
input-accessing instructions that have tainted operands. Otherwise,
it will be removed (Line 18).

When constructing the input structure,NestFuzz prunes useless
sub-trees and merges redundant nodes. Technically, there are two
main cases. First, a program may access and load the same variable
or different variables but with the same taint sources many times
in practice. Consequently, the originally generated Input Processing
Tree contains many nodes that have the same start and end prop-
erties. If these nodes have the same parent nodes, Input Processing
Tree only needs to keep one of them. Second, the program may
access the bytes in one indivisible field separately, thus making
Input Processing Tree include many redundant nodes. For example,
the program may access a four-byte length size field byte by byte.
NestFuzz will check and merge them.

Running Example. To clarify the construction of our Input Pro-
cessing Tree, we utilize our NestFuzz approach on the motivating
example (in Figure 2) and present its outcome in Figure 5. The leaf
nodes in Figure 5 are the load instructions containing the tainted

variables, i.e., at Line 12 and 20 in Figure 2. These instructions are
the same instructions but executed multiple times under different
contexts. Their operands have different taint tags and thus we create
distinct nodes to represent them individually. It is worth noting that
Lines 12 and 13 both load the variable type and we eliminate the du-
plication. The inner nodes in Figure 5 correspond to function calls,
loops, and loop iterations as shown in Figure 2, and the leaf nodes
of the subtree led by each internal node are all input-accessing
instructions. Note that some program functions and iterations can
be executed multiple times, e.g., the function 𝑏𝑜𝑥_𝑝𝑎𝑟𝑠𝑒_𝑒𝑥 . We
create different nodes to represent each execution round.

Interestingly, the structure of the program’s input processing
tree is similar to the nested structure of the input. In other words, a
certain substructure in the input is usually processed in a sub-tree
led by a certain function or loop. This relationship can help us
identify the input structure.
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while loop 

box_parse_ex
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box_array_read
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Figure 5: The Input Processing Tree for motivating example.

4.3 Fuzzing with Dependency-aware Mutation

After modeling the input processing logic of the program, Nest-
Fuzz guides fuzzing with a cascading dependency-aware mutation.
That is, when mutating a field or substructure of the input, the
mutation operation propagates along the Input Processing Tree and
cascadingly mutates the related fields and substructures to fix the
corresponding dependencies.

4.3.1 Dependency-aware mutation. Considering the inter-field de-
pendency and nested input structure, we design a dependency-
aware mutation strategy. As Input Processing Tree demonstrates, a
simple mutation of an input field changes not only its own proper-
ties but also its container (parent) fields and the fields that depend
on it. In general, if the fuzzer mutates fields without restoring the
broken input structure that the mutation causes, there is a high
probability that the generated input will be rejected by the program
and cannot explore the deep code space. To resolve this issue, we
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propose our cascading mutation strategy, whenever NestFuzz mu-
tates (field or structure-level) the input, it cascadingly mutates other
affected fields or substructures to maintain the structure validity of
the generated test case.

Specifically, the mutation strategy of NestFuzz can be divided
into two levels: field-level and structure-level:

• Field-level mutators. NestFuzz designs field-level muta-
tors based on the inter-field dependency knowledge, i.e.,
D[payload, length], D[payload, offset], and D[payload, type].
For instance, for the inter-field dependencyD[payload, length],
NestFuzzmay increase the value of the length field by X and
insert X bytes after the payload correspondingly, or insert a
substructure after the payload and increase the value of the
length field by the length of the substructure.

• Structure-levelmutators.NestFuzz implements four types
of structure-level mutators based on the knowledge of the
nested hierarchy, i.e., substructure insertion, deletion, ex-
change, and file splicing. For instance, to explore more com-
plex substructures, NestFuzz may copy a substructure and
insert it into the payload of another substructure.

Based on these mutation operators, our cascading mutation can
be described as follows.

In the path exploration stage, when NestFuzz uses any of the
mutators, it will search for the affected fields or substructures ac-
cording to inter-field dependencies and hierarchy dependencies,
and apply the corresponding mutator to maintain the dependency
relationship from being broken. For instance, suppose NestFuzz
inserts payloads to smp_info of a substructure (sdtp) of Figure 1.
In that case, since the length of sdtp has changed, NestFuzz will
change the value of its len field. Moreover, since sdtp serves as the
payload for a higher-level substructure (traf ), which means that
the len field of traf will also be adjusted accordingly.

In the security exploitation stage, in order to exploit deep vul-
nerabilities hidden in the program, NestFuzz prioritizes mutating
newly discovered and deeply nested substructures. As shown in
our Input Processing Tree, nested structures at deeper levels often
correspond to the deeper processing logic. On the one hand, this
part of the code is explored less frequently, making it more likely
to contain vulnerabilities. On the other hand, by mutating these
nested structures while maintaining the dependencies between
them and the upper-level structures, we can explore the deeper
code while still preserving the shallow-level processing logic. Note
that, in order to cover bugs in input processing logic, NestFuzz
would not strictly fix all the dependencies. For example, NestFuzz
may only mutate the length field (e.g., set its value to the length of
the file) but do not adjust the payload field (e.g., insert X bytes into
the payload).

Table 2 shows some examples of the mutators that NestFuzz
implements. In total, NestFuzz implemented over 50 mutators at
both field and structure levels. Due to the space limitation, we depict
a selection of representative examples in the table.

Compared to our multi-layer mutators, AFLSmart introduced
three structural mutators. However, its mutators may disrupt inter-
field and hierarchy dependencies, resulting in invalid inputs. For
instance, it may add a new structure to a payload without appro-
priately mutating the corresponding length field. In contrast, our

NestFuzz mutators are dependency-aware and thus can mutate
multiple fields together to maintain their dependencies, e.g. length
and payload. Furthermore, NestFuzz can be used cascadingly to
generate complex and valid inputs (Table 2).

Table 2: Exmaple of mutators implemented by NestFuzz.

Exploration Mutators Exploitation Mutators

Field
Level

D[payload,
length]

length is increased by X
→Insert X random bytes after payload Only increase length by X

SF is inserted after payload
→Increase length by len(SF) Set length to len(input)

SF is inserted before payload
→Increase length by len(SF) Delete X bytes from payload

D[payload,
offset]

SF is inserted before payload
→Increase offset by len(SF) Only increase offset by X

SF is inserted after offset.parent
→Increase offset by len(SF) Set offset to len(input)

D[payload,
category]

Set category to one of the
values in the val_set Bitflip

Structure
Level

Insertion
SF1.parent == SF2.parent
→ copy SF1 and insert after SF2 copy SF1 and insert after SF2

copy SF1 and insert into the
payload of SF2

copy SF and insert at
any position

Deletion - delete SF

Exchange SF1.parent == SF2.parent
→ exchange SF1 and SF2 exchange SF1 and SF2

Splice
SF1 ∈ Input1, SF2 ∈ Input2
SF1.parent == SF2.parent
→ copy SF1 and insert after SF2

SF1 ∈ Input1, SF2 ∈ Input2
copy SF1 and insert after SF2

5 EVALUATION

5.1 Experiment Setup

Prototype Implementation. We implement NestFuzz with over
3.5k lines of C/C++ code and 1.8k lines of Rust code. Our taint anal-
ysis module is implemented based on DFSan [5]. For building Input
Processing Tree, we use LLVM Pass [22] to instrument the program
in several instructions (e.g., load, loop, call, cmp, and switch). We
write our runtime building logic in Rust, and also model crucial
functions (e.g., fread, memcpy, memmove, strncpy, read, pread, lseek
and fseek). For structure-aware fuzzing, we implement our novel
dependency-aware mutation strategies in AFL 2.57b, and develop a
python script (0.5k LoC), to synchronize seeds and structure files
between fuzzer and input structure modeling.

Benchmark Programs. We selected our benchmark programs
from two widely used fuzzing benchmarks, namely FuzzBench [29]
and UniFuzz[24], and the testing targets of other structure-aware
fuzzers [17, 19, 25, 28]. The main program selection criterion and
goal is to cover more programs with different file formats (as input).
As a result, our benchmark consists of 20 popular heavily-tested
programs, including 14 binary programs (featuring 12 distinct file
formats, e.g., image, audio, video, and network packet) and 6 non-
binary programs with unique formats (e.g., JSON, and XML). More
details are shown in Table 3.

Baseline Fuzzers. In our comparison experiments, we select eight
state-of-the-art open-source fuzzers as our evaluation baseline, in-
cluding universal and frequently-used fuzzers: AFL (2.57b) [30],
AFLFast [10], AFL++ [18], and MOpt [28], and input structure-
aware fuzzers: AFLSmart [31], WEIZZ [17], ProFuzzer [43], and
TIFF [20]. AFL was one of the most popular fuzzer, while AFLFast
was built based on AFL by optimizing power scheduling. AFL++
was a fuzzing framework that incorporated several other fuzzing
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researches and was one of the highest-rated fuzzing tools according
to FuzzBench [29].MOpt was also based on AFL by optimizing mu-
tator scheduling. AFLSmart, WEIZZ, TIFF, and ProFuzzer leveraged
input-format templates or inferences to increase fuzzing efficiency.

Test Bed and Initialization.We carry out all the following exper-
iments on a Ubuntu 20.04 server with AMD EPYC 7513 CUPs (128
cores in total) and 1024 GB RAM. For initialization, we randomly
select one initial corpus for each program in our benchmark, and
use the same seeds for all fuzzers. The fuzzer was executed on each
target application under identical configurations, with each fuzzer
bound to a single CPU core. Because ProFuzzer runs in two separate
processes, one for fuzzing and one for probing, and our current
implementation for NestFuzz also runs in two separate processes,
one for fuzzing and one for input processing logic modeling, we
assign two CPU cores to both ProFuzzer and NestFuzz.

Table 3: The benchmark programs and parameters used in

our evaluation.

Format Library Version Program & Parameter

ZIP p7zip 16.02 7za t @@
JPG exiv2 0.26 exiv2 @@
MP4 gpac 2.0.0 MP4Box -diso @@
GIF imageMagick 7.1.0-49 magick identify @@
H.265 libde265 1.0.9 dec265 @@
MOBI libmobi 0.11 mobitool -e -o /tmp @@
PNG libpng 1.6.38 pngtest @@
MP3 mp3gain 1.5.2 mp3gain @@
MP4 bento4 1.5.1-628 mp42aac @@ /dev/null

ELF binutils 2.28

nm-new -A -a -l -S -s
–special-syms
–synthetic
–with-symbol-versions
-D @@

ELF binutils 2.28 objdump -S @@
PDF xpdf 4.00 pdftotext @@ /dev/null

PCAP tcpdump 4.8.1
(libpcap 1.8.1) tcpdump -e -vv -nr @@

TIFF libtiff 3.9.7 tiffsplit @@
TXT ncurses 6.1 tic -o /dev/null @@
MD cmark 0.30.3 cmark @@
YAML libyaml 0.2.5 run-parser @@
XML libxml2 2.11.0 xmllint –testIO @@
JSON jansson 2.14 jansson @@
C indent 2.2.13 indent @@ -o /dev/null

5.2 Test Coverage

We run all fuzzing tools with the same timeout of 24 hours and
repeat the experiments five times for statistical power. Table 4
reveals the line coverage and branch coverage of each fuzzing
tool. Our evaluation results prove that NestFuzz outperforms the
state-of-the-art format-aware and other fuzzers in line and branch
coverage.

For binary file formats, NestFuzz obtains the highest number of
lines and branches in 13 out of the 14 benchmark programs. On aver-
age, NestFuzz achieves 27%/56%/28%/154% more line coverage and
28%/67%/30%/204% more branch coverage than AFLSmart/WEIZ-
Z/ProFuzzer/TIFF, respectively, compared with structure-unware
but general fuzzers, NestFuzz achieves 40%/48%/30%/32% more
line coverage and 47%/57%/31%/35% more branch coverage that
AFL/AFLFast/AFL++/MOpt, respectively. Although our current
implementation does not consider the checksum used by the PNG

format to check file integrity, NestFuzz still achieves the second-
best coverage results during testing of pngtest.

For non-binary file formats, in comparison to the state-of-the-art
structure-aware fuzzing approaches, we find NestFuzz can achieve
the best results in most cases. For instance, NestFuzz averagely has
10.89%/49.01% more line coverage and 16.51%/73.38% more branch
coverage than WEIZZ and TIFF. In contrast to the general fuzzers,
the experiments show NestFuzz’s results are better than AFL and
AFLFast, and slightly below AFL++ and MOpt. One important rea-
son is that many non-binary formats, e.g., JSON and C language
files, are grammar-based and characterized by strict syntactic con-
straints. Slightly differing in perspective, our main focus mainly
centers on chunk-based inputs [17] that have complex hierarchical
structures.

To further demonstrate the effectiveness of NestFuzz, we track
the growth trend of edge coverage for AFL-based fuzzers and
present it in Figure 6. In most of the projects, NestFuzz achieves
the highest edge coverage at a faster pace, compared to all other
fuzzers. NestFuzz achieves significant improvements distinctly in
the two following types of programs.

First,NestFuzz outperforms the baseline fuzzers distinctly when
testing complex file formats. Take the MP4 file format as an example.
When testing the MP4 program MP42aac [2], NestFuzz achieves
104% more line coverage and 115% more branch coverage than
AFLSmart, which achieves the best result in the baseline fuzzers.
We further analyze the result and find the reasons mainly contain
two parts. First, template-based fuzzers like AFLSmart need a pre-
cise format model for input format, which is challenging to write
for complex file formats like MP4. Actually, the specification of MP4
defines 104 different and nested data boxes. It is difficult to write
a model that covers all the data boxes and clearly outlines all the
potential associations they might have. As a result, the MP4 format
model supplied by AFLSmart only contains 7 different boxes (6.7%
of the specification). The second reason is that, there are inconsis-
tencies between format specification and program implementation.

Second, NestFuzz outperforms the baseline fuzzers when test-
ing programs that can process multiple file formats. For instance,
magick [4] can edit more than 200 image formats, and NestFuzz
achieves 59% more line coverage and 66% more branch coverage
than AFL when testing it. After manually checking the seeds gen-
erated by these fuzzers, we find that the main reason is, benefiting
from our structural-level mutators, NestFuzz could mutate the
seeds with a big change at the substructure level and keep the
newly generated seeds valid. Thus, it has more chances to take a
big step in the search space of input formats and find a new format.

5.3 Vulnerability Detection

5.3.1 Unique bugs. In order to study whether the coverage im-
provements NestFuzz achieves can help it trigger more vulnerabili-
ties hidden in the program, we compare the vulnerability discovery
ability of NestFuzz with other fuzzers.

We compile the programs in our benchmark (Table 3) with
ASAN [34] and fuzz them for 24 hours and repeat the experiment
five times. To categorize the program crashes into distinct bugs, we
follow the procedure proposed in previous studies [24], involving
the following steps. First, we used AFL-cmin [30] to minimize the
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Table 4: Average line and branch coverage(for 24 hours over five runs) achieved by fuzzers when testing real-world programs.

Input
Format Program

Structure-aware Fuzzers General Fuzzers

NestFuzz AFLSmart WEIZZ ProFuzzer TIFF AFL AFLFast AFL++ MOpt

L B L B L B L B L B L B L B L B L B

Binary
Formats

7za 9762 7554 8501 6637 7865 5824 8245 6435 5004 3702 7816 6006 7724 5950 7408 5538 8219 6208
exiv2 5659 6722 4454 4944 3798 4134 4308 4797 1160 1151 3675 3971 2358 2507 4249 4821 4288 4810
MP4Box 9395 5677 6335 3632 4809 2701 6280 3683 3696 2074 4648 2713 5035 2876 6270 3654 5669 3333
magick 22655 11354 14063 6815 8688 3712 14148 6850 6129 2710 14274 6839 13146 6115 13049 6507 12557 6160
dec265 10660 5790 10645 5754 10199 5036 10649 5765 9761 4014 10437 5404 10561 5598 10668 5766 10732 5777
mobitool 3543 2267 − − 3106 1988 3025 1941 2865 1689 2976 1873 2971 1867 3013 1931 3029 1941
pngtest 2371 1232 1979 975 2523 1343 1971 969 1919 923 1938 944 1944 947 1979 975 1983 979
mp3gain 2085 1011 1930 925 2037 1001 1960 934 1632 762 1948 947 1936 931 1958 954 1973 963
mp42aac 5242 3654 2567 1700 2114 1299 2516 1651 1895 1146 2304 1443 2295 1449 2366 1559 2377 1545
nm-new 4204 2444 3391 1968 3351 1836 3410 1981 1264 610 3339 1947 2972 1756 3111 1904 3401 1967
objdump 7450 4740 6363 4032 4177 2441 6221 3962 2000 998 6238 3894 5191 3268 5985 3909 6171 3917
pdftotext 3191 1914 2638 1455 1880 1060 2873 1591 1427 763 1845 1046 1843 1045 2895 1615 1848 1051
tcpdump 19431 13549 17562 12263 12298 7651 16608 11509 2307 1359 12950 8543 12721 8501 18093 12398 16975 11407
tiffsplit 3219 1957 − − 3052 1834 2988 1811 1878 1031 3051 1828 2825 1682 2971 1810 3004 1813

Average 7776 4990 6702 4258 4993 2990 6069 3837 3067 1638 5531 3386 5252 3178 6001 3810 5873 3705
Increase − − 26.95% 28.46% 55.75% 66.89% 27.77% 29.67% 153.55% 204.67% 40.58% 47.40% 48.07% 57.03% 29.58% 30.98% 32.40% 34.69%

Non-binary
Formats

tic 1868 1478 − − 1674 1295 1837 1450 − − 1544 1166 1609 1229 1872 1478 1905 1514

cmark 10504 9301 − − 8650 7389 10879 9474 4767 3608 11038 9546 9698 8662 11480 10019 11349 9848
run-parser 1636 2340 − − 1529 1852 1547 2210 940 925 1544 2122 1540 2104 1544 2219 1547 2218
xmllint 9021 7646 − − 8452 6888 8741 7319 7741 5876 8141 6608 8151 6609 9137 7823 8697 7274
jansson 925 439 − − 890 427 911 441 725 411 891 432 894 433 896 435 903 439
indent 2298 1651 − − 2480 1765 2326 1672 2190 1509 2288 1636 2295 1645 2360 1694 2328 1670

Average 4375 3809 − − 3946 3270 4374 3761 3273 2466 4241 3585 4031 3447 4548 3945 4455 3827
Increase − − − − 10.89% 16.51% 0.04% 1.28% 49.01% 73.38% 3.17% 6.25% 8.55% 10.50% -3.80% -3.43% -1.78% -0.47%

1 The L means line coverage, the B means branch coverage, and − means the program cannot be fuzzed by the fuzzer.

set of inputs that resulted in program crashes. This involved iden-
tifying the smallest possible subset of files in the input directory
that could still trigger the full range of instrumentation data points
observed in the initial corpus. Then, we relied on the output report
generated by ASAN to extract the top three functions in the stack
trace and group them as a triple to detect and eliminate duplicate
bugs. Bugs were deemed unique if they had different triples and
vulnerability types. Finally, we manually analyzed the results and
counted the corresponding number of unique bugs.

Table 5 presents the average and maximum number of unique
bugs of several fuzzing tools over five runs. NestFuzz finds the
largest number of unique bugs in most of the programs. In detail,
NestFuzz on average found 247 unique bugs, which is 578.57%
more than the baseline fuzzer, i.e., AFL, and 107.56% more than
the second-best fuzzer AFLSmart. In the maximum run, NestFuzz
found 296 unique bugs, which is 572.73% more than the baseline
fuzzer AFL, and 75.15% more than the second-best fuzzer AFLSmart.

To further prove the effectiveness of NestFuzz, we plot the
growth trend of unique bugs in Figure 7. Our results show that
NestFuzz outperforms all other fuzzers by detecting a larger num-
ber of unique bugs at a faster rate in these projects.

5.3.2 Exposing Known Vulnerabilities. To better demonstrate Nest-
Fuzz’s ability to discover vulnerabilities, we match the unique bugs
discovered by the fuzzing tool with known vulnerabilities (already
assigned CVE IDs). To achieve this goal, we used scripts provided by
UniFuzz [24] and manually confirmed the matching results. Table 6
shows the shortest time taken by different fuzzing tools to detect
certain known vulnerabilities across five runs. In particular, within

24 hours, NestFuzz was able to detect all 20 known vulnerabilities,
whereas AFLSmart, WEIZZ, ProFuzzer, AFL, AFLFast, AFL++, and
MOpt only discovered 10, 12, 10, 9, 9, 8 and 9 respectively. When
testing the program mp42aac, only NestFuzz identified unique
bugs (as presented in Table 5) as well as known vulnerabilities.
It took a mere 0.55 hours for NestFuzz to uncover vulnerability
CVE-2018-14531; other fuzzers were unable to do so even after 24
hours of testing.

5.3.3 Zero-day Vulnerability Discovery. Table 5 also aggregates the
unique vulnerabilities only discovered by NestFuzz on the pro-
grams in our benchmark. Totally, NestFuzz found 46 unknown
vulnerabilities and we reported them to corresponding vendors.
Currently, 39 have been confirmed and 37 of them have been as-
signed with CVE-ids until the writing of this paper. To demonstrate
how the structure knowledge NestFuzz learned helps it hack the
program, we use a zero-day vulnerability it found for a case study.

CVE-2022-48065: Memory Leak. NestFuzz discovered a mem-
ory leak vulnerability in nm-new, which is part of Binutils [6]. The
vulnerable code is displayed in Figure 8. In line 3429, the function
parses data in the DWARF format .debug_info section of the ELF
file using a loop (line 3594) to parse its abbreviations. The bug oc-
curs when a nested abbreviation contains both a DW_AT_decl_file
type of data box and a DW_AT_specification type of data box.
Furthermore, the DW_AT_specification box has a child box that
contains another DW_AT_decl_file. When processing the outer-
most DW_AT_decl_file, memory is allocated at line 3633, and then
recursively calls the function find_abstract_instance to parse
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Figure 6: The arithmetic mean edge coverage of AFL-based fuzzers running for 24 hours and one standard deviation error bars

over five runs.

Table 5: Average and maximum number of unique bugs(for 24 hours over five runs) achieved by various fuzzers when testing

real-world programs.

Program NestFuzz AFLSmart WEIZZ ProFuzzer AFL AFLFast AFLplusplus MOPT Bugs found only by NestFuzz

Average Max Average Max Average Max Average Max Average Max Average Max Average Max Average Max Unknown Known CVE

7za 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
exiv2 13 18 2 3 4 5 2 4 1 2 0 0 4 5 2 3 0 20 0
MP4Box 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 8
dec265 30 46 23 49 0 0 9 18 0 0 0 1 26 43 4 9 19 1 16
mp3gain 6 6 6 7 6 9 7 8 4 4 4 5 5 5 6 6 0 1 0
mp42aac 13 14 0 0 1 1 0 0 0 0 0 0 1 1 0 0 12 2 8
nm-new 3 5 0 2 3 5 2 4 0 0 0 0 0 1 0 1 2 4 2
objdump 10 11 2 3 2 3 2 3 0 1 1 1 2 3 1 3 2 12 1
pdftotext 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
tcpdump 149 165 86 104 23 30 76 83 23 28 28 41 18 24 36 50 0 129 0
tiffsplit 13 15 0 0 23 24 7 10 7 8 8 8 9 11 7 10 0 2 0
tic 4 5 0 0 4 6 5 8 0 0 1 2 3 6 5 7 1 1 1
indent 1 1 0 0 1 1 2 3 1 1 1 1 3 6 4 7 0 0 0

Total 247 296 119 169 67 84 112 142 36 44 43 59 71 106 65 96 46 172 37
Increase − − 107.56% 75.15% 268.66% 252.38% 120.54% 108.45% 578.57% 572.73% 474.42% 401.69% 247.89% 179.25% 280.00% 208.33% − − −
1 Since WEIZZ (implemented based on QEMU [9]) and TIFF (implemented based on Pintool [27]) were incompatible with ASAN [34], we initially tested them on non-ASAN-instrumented
programs and then replayed the generated inputs on ASAN-instrumented programs.

2 TIFF fuzzer did not find any bugs in all the programs in our evaluation.
3 All fuzzers, when testing programs magick, mobitool, pdftotext, cmark, run-parser, xmllint, and jassson, did not discover any bugs.

the innermost child’s DW_AT_specification. Lines 3629-3635 pro-
cess this inner child’s DW_AT_decl_file, reallocating memory for

pointer variable filename_ptr before freeing it, resulting in mem-
ory leakage. Traditional byte- or field-level mutation strategies are
unlikely to generate such nested structures for this vulnerability.
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Figure 7: The arithmetic mean number of unique bugs of

AFL-based fuzzers running for 24 hours and one standard

deviation error bars over five runs.

Table 6: Time consumption to expose known vulnerabilities.

Program CVE ID Exposing Time (hours)

NestFuzz AFLSmart WEIZZ ProFuzzer AFL AFLFast AFL++ MOpt

exiv2
CVE-2017-11339 16.25 20.72 17.92 4.5 T/O T/O 11.52 3.42
CVE-2017-17669 10.63 T/O T/O T/O T/O T/O T/O T/O
CVE-2018-10780 16.2 21.38 19.3 T/O T/O T/O 11.77 T/O

tcpdump

CVE-2016-7973 2.57 6.39 17.45 2.29 19.17 22.82 T/O 9.82
CVE-2016-7985 1.02 T/O 18.32 T/O 18.17 22.19 T/O T/O
CVE-2016-7983 0.62 4.52 13.87 T/O 11.44 11.66 T/O T/O
CVE-2017-13013 3.78 7.42 T/O 8.13 T/O T/O T/O T/O
CVE-2017-12986 13.75 T/O T/O T/O T/O T/O T/O T/O
CVE-2017-13013 3.78 7.42 T/O 8.13 T/O T/O T/O T/O

mp3gain

CVE-2017-14409 0.03 0.13 0.21 0.14 0.28 0.33 0.24 0.32
CVE-2017-14410 0.28 0.12 0.67 0.2 1.13 0.87 0.25 0.65
CVE-2017-14406 1.83 22.32 3.33 T/O 6.81 4.58 1.4 1.19
CVE-2017-14407 0.11 1.27 2.98 0.28 9.43 4.92 4.28 1.24

mp42aac

CVE-2018-14587 16.21 T/O T/O T/O T/O T/O T/O T/O
CVE-2018-14584 4.4 T/O T/O T/O T/O T/O T/O T/O
CVE-2018-14531 0.55 T/O T/O T/O T/O T/O T/O T/O
CVE-2018-14588 20.35 T/O T/O T/O T/O T/O T/O T/O

tiffsplit
CVE-2016-9273 0.61 − 0.75 0.53 21.25 12.54 4.56 0.45
CVE-2015-7554 1.92 − 0.98 17.31 T/O T/O 0.34 1.63
CVE-2010-2631 0.02 − 0.01 0.22 0.09 0.01 T/O 2

}3648
3643     }
3642         }             leak happens */
3635             break; /* Allocate memory and memory
3633                 *filename_ptr = concat_filename(...);

            case DW_AT_decl_file:3629
            ... 
            break;3618

3614                 find_abstract_instance(...);
            case DW_AT_specification: 3612
        switch (attr.name) {3600

3594     for (i = 0; i < abbrev->num_attrs; i++) {
3429 static bool find_abstract_instance (...) {
/* File: bfd/dwarf2.c */

Figure 8: Amemory leak vulnerability detected byNestFuzz.

5.4 Ablation Study

NestFuzz learns two types of major knowledge about the input,
i.e., the inter-field dependency, and the hierarchy of input structure.
We conducted experiments to improve the importance of these two

kinds of knowledge for NestFuzz to explore the program. Table 7
presents the line and branch coverage of NestFuzz, NestFuzz-F,
which only leverages the inter-field dependency knowledge to mu-
tate the input, andNestFuzz-S, which only leverages the structure’s
hierarchy knowledge. NestFuzz achieves the highest coverage on
all the programs, on average, NestFuzz-S covers 11.51% and 11.40%,
andNestFuzz-F covers 24.92% and 26.22% less code and branch cov-
erage than NestFuzz, respectively. We can conclude that both field
dependency and structure’s hierarchy knowledge are significant
for NestFuzz to generate high-quality test cases.

Table 7: Average line and branch coverage(in 3 runs) achieved

by NestFuzz, NestFuzz-F, NestFuzz-S when testing real-

world programs.

Program NestFuzz NestFuzz-F NestFuzz-S

L B L B L B

7za 9947 7790 9281(-6.70%) 7092(-8.96%) 8409(-14.65%) 6664(-14.45%)
objdump 7662 4783 6978(-8.93%) 4415(-7.69%) 5741(-25.16%) 3706(-22.52%)
magick 21420 11119 17601(-17.83%) 9427(-15.22%) 1442(-34.44%) 6911(-37.85%)
MP4Box 9369 5656 7938(-15.27%) 4714(-16.65%) 6471(-30.75%) 3801(-32.80%)
MP42aac 5252 3809 4929(-6.15%) 3487(-8.45%) 2748(-47.47%) 1852(-51.38%)
mobitool 3506 2240 3477(-0.83%) 2225(-0.67%) 2922(-14.66%) 1903(-15.04%)
tic 1915 1534 1858(-2.98%) 1481(-3.46%) 1748(-6.53%) 1387(-9.58%)
pdftotext 3189 1899 2191(-31.30%) 1397(-26.43%) 1839(-42.08%) 1049(-44.76%)
tcpdump 18932 13152 16361(-13.58%) 11175(-15.03%) 1711(-8.60%) 12156(-7.57%)

Average

Reduction - - 11.51% 11.40% 24.92% 26.22%
1 The L means line coverage, and the B means branch coverage.

5.5 Input Structure Inference

5.5.1 Performance. NestFuzz utilizes dynamic taint analysis and
code instrumentation to trace the program and comprehend the in-
put processing logic. However, this approach inevitably introduces
additional overhead to the program.

To assess NestFuzz’s performance, we conducted a compar-
ative analysis of its time overhead against other input structure
inference methodologies, namelyWEIZZ, ProFuzzer, TIFF, and AFL-
Analyze [1]. AFL-Analyze is a file format analyzer that AFL provides.
It identifies the boundaries and types of input fields by sequentially
flipping data bytes and observing the behavior of the program.
We excluded AFLSmart from our comparison, as it inferred input
structures based on templates rather than an automatic program
analysis.

Specifically, we collected five inputs that differed widely in size
and structure from each program within our benchmark that pro-
cesses binary input formats. As an illustration, we collected exe-
cutable files, object code, shared libraries, and core dumps for the
ELF format. We then calculated the average time taken by Nest-
Fuzz and the other approaches to infer the structure of a single
input. The summarized results are presented in Table 8.

Across all programs, NestFuzz demonstrated significantly re-
duced inference times, averaging about 0.77 seconds. In contrast,
the second-best solution, TIFF, required an average of 24.9 seconds.
This suggests that the time consumed by NestFuzz for compre-
hending input structures remains reasonable in practical scenarios.

5.5.2 Complexity and Correctness. NestFuzz adeptly captures inter-
field dependencies and hierarchy dependencies within the input by
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constructing the Input Processing Tree. In this section, we study the
complexity and correctness of the input structure that NestFuzz
recovers.

Complexity. To investigate the complexity of the tree structure,
we conducted two sets of experiments.

On the one hand, we compute the average depth of the con-
structed tree structure in NestFuzz for each input that we select.
Generally, a tree hierarchy with a greater average depth is consid-
ered more complex. The outcomes of this analysis are depicted in
Figure 9 (a). Specifically, the complexity of the input structure varies
across different input formats and programs. While most inputs
exhibit an average depth larger than 4, MP4 files display the highest
average depth, reaching 11.68 within MP4Box. Remarkably, Nest-
Fuzz generates distinct tree structures for identical inputs processed
by different programs. For instance, when applying the same in-
puts to both nm-new and objdump, subtle disparities in the average
depth of the constructed tree structure emerge. This phenomenon
arises due to potential variations in processing logic among dif-
ferent programs for the same input. In contrast to template-based
fuzzing approaches, e.g. AFLSmart,NestFuzz possesses the capabil-
ity to detect such distinctions. Consequently, NestFuzz can tailor
its input mutation strategies to accommodate these differences ef-
fectively. Furthermore, the complexity of the input structure also
influences the efficacy of various fuzzing methodologies. For in-
stance, as demonstrated in Section 5.2, NestFuzz notably surpasses
our baseline fuzzers in testing programs MP4Box and mp42aac.

Furthermore, we opted for two representative file formats, MP4
as a complex format, and JPG as a simple format as indicated by
Figure 9 (a), to study the depth distribution of inputs generated by
structure-aware fuzzers during a 24-hour testing period on their
processing programs (MP4Box for MP4 and exiv2 for JPG). To begin,
we accumulated inputs generated by structure-aware fuzzers during
the program testing phase. Subsequently, we utilized NestFuzz to
generate a tree structure for each input and subsequently classified
the inputs based on the depth of their tree structure. Finally, we
determined the proportion of inputs generated by each fuzz testing
tool within distinct depth categories. The outcome of our evaluation
for theMP4Box and exiv2 programs is illustrated in Figure 9 (b) and
Figure 9 (c).

Based on our experimental results, we can draw a conclusion:
compared to existing tools, NestFuzz is capable of generating a
higher proportion of inputs with relatively complex structures. For
instance, only NestFuzz and AFLSmart generated inputs with aver-
age structure depths exceeding 40 and 8 when testing MP4Box and
exiv2, respectively. Remarkably, the inputs generated by NestFuzz
accounted for 70% and 85% in the respective cases. This unique
ability to generate inputs with intricate structures significantly
augments NestFuzz’s effectiveness in uncovering vulnerabilities
that are deeply embedded.

Correctness. In order to study the correctness of the input
structure that NestFuzz infers, we selected the MP4 format [3] as
a case study. First, drawing inspiration from existing work [35], we
utilized a popular tool 010 Editor [39] to parse the five files that
we selected and extract their structure information as the ground
truth.

Compared to 010 Editor, NestFuzz can even identify more pre-
cise input fields and structures. For example, it recognizes 19.66%

more fields and 76.48% more structures on average in the MP4
format. We sincerely analyzed these fields and found that they de-
scribe the input structure’s significant properties and impact the
program execution. Figure 10 illustrates the results of identifying
an MP4 file using NestFuzz. In Figure 10 (a), the outcomes of field
identification are presented, while Figure 10 (b) depicts the rec-
ognized structure. In comparison to NestFuzz, the identification
carried out by 010 Editor is limited. Specifically, 010 Editor only
succeeds in identifying the length and type fields within the udta
box. For the meta box and its associated sub-boxes, 010 Editor only
perceives them as raw data. Upon conducting a thorough analy-
sis, we uncovered that 010 Editor relies on a template to parse the
MP4 file. However, this template merely accounts for 37 box types,
whereas the actual MP4Box program encompasses 532 box types.
This discrepancy leads to over 93% of the box types handled by
MP4Box being unrecognized by 010 Editor. As a consequence, the
ability to handle nested structures within inputs, as highlighted in
Section 2, is crucial for fuzzers to generate intricate inputs capable
of exposing profound vulnerabilities.

Table 8: Average time to process an input(seconds).

Format Program Size(bytes) NestFuzz WEIZZ ProFuzzer TIFF AFL-Analyze

ZIP 7za 844 0.05 123.47 17792.42 15.50 10.18
JPG exiv2 3212 0.01 83.61 61234.48 18.51 36.28
MP4 MP4Box 9932 0.06 255.44 T/O 38.82 185.46
MP4 mp42aac 9932 0.05 240.44 T/O 12.38 86.63
GIF magick 1017 0.04 56.65 5748.73 38.82 12.91
H.265 dec265 3084 4.01 5113.96 T/O 80.51 102.63
MOBI mobitool 9245 0.27 270.02 T/O 32.67 135.81
PNG pngtest 1271 0.20 81.35 17208.56 20.13 16.01
MP3 mp3gain 6857 0.01 4636.78 11226.83 11.44 36.10
ELF objdump 5151 0.07 467.63 T/O 8.93 52.95
ELF nm-new 5151 0.03 113.68 T/O 5.98 34.50
PDF pdftotext 9651 5.93 3476.14 T/O 53.06 386.28
PCAP tcpdump 850 0.01 27.14 9775.93 4.58 4.93
TIFF tiffsplit 1216 0.02 36.97 66100.30 7.31 5.74
1 T/O means ProFuzzer fails to get the result within 24 hours limits.

6 DISCUSSION AND LIMITATION

Our experiments show that NestFuzz outperforms the state-of-
the-art format-aware fuzzing approaches by modeling the input
processing logic of the tested program and gaining a whole un-
derstanding of the input structure. Thus, during input mutation, it
can utilize a dependency-aware strategy to ensure it would not fre-
quently generate invalid input, which greatly improves the fuzzing
efficiency. In this section, we discuss the limitations of NestFuzz.

Limitations due to the dependency on taint tracking. NestFuzz
identifies input processing instructions based on byte-level dynamic
taint analysis. However, under-taint and over-taint issues may be ex-
isting in such a taint analysis, inevitably impacting the precision of
NestFuzz. We leave involving the existing mitigation solutions [21]
against under-taint and over-taint as our future work.

Generalizing to infer inter-field dependencies of other types. In
this work, we mainly focus on three structurally important depen-
dencies. In addition to these, there are still other types of complex
constraints over input, e.g. input checksum verification and some
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numerical constraints between fields. For checksum-related con-
straints, it could be mitigated by instrumenting and patching the
checksums [17, 38]. For numerical constraints, it could be dealt
with by applying symbolic execution [32, 33, 44] or gradient de-
scent [13, 14]. Furthermore, constraints might exist between certain
string or byte-array fields. Commonly, programs employ functions
likememcmp to compare two strings or arrays, with these functions
frequently utilizing pointer arguments [8, 17]. Therefore, similar
techniques used for modeling functions like read (See more details
in Section 4.2.2) can be extended to infer and handle these con-
straints. We consider these enhancements as integral parts of our
future work.

7 RELATEDWORK

Structure-aware Fuzzing The critical idea behind structure-aware
fuzzing [8, 17, 20, 31, 35, 42, 43] is to mutate the input more effi-
ciently based on the knowledge about the input structure. For ex-
ample, TIFF [20] presented mutation strategies for finding memory-
corruption bugs by tagging the input bytes with a basic type. Pro-
Fuzzer [43] proposed a probing technique to understand the type of
the input field, which supported 6 field types. WEIZZ [17] proposed
a technique to automatically identify the fields and chunks within
chunk-based file formats, inspired by REDQUEEN [8]. AIFORE [35]
reversed the input field types and boundaries based on taint analysis
and neural network model. Technically, these approaches mainly fo-
cused on identifying single fields of input. Compared with existing
work, NestFuzz not only identifies single fields but also considers
the input’s hierarchy structure as well as the complex dependencies
across fields and substructures.

Another thread of work utilized pre-defined templates to gener-
ate structural input. For example, AFLSmart [31] introduced smart
grey-box fuzzing based on Peach [7]. It leveraged a format template
to obtain a tree representation of the input structure and imple-
mented smart structure-level mutation strategies. Compared with

them,NestFuzz relies on no template and could automatically learn
input structures from code implementation.

In general, current format-aware fuzzing tools lacked a com-
prehensive understanding of input formats. Compared with them,
NestFuzz models the input formats with Input Processing Tree and
proposes a dependency-aware mutation to drive fuzzing, which are
proved to be more effective based on our evaluation results.
Input Structure Reverse Engineering. This kind of work [11, 15,
16, 23, 26, 36, 37, 40] focused on automatically reversing protocols,
file format structures and specifications. Discoverer [15] and Poly-
glot [11] focused on identifying fields and separators in protocol
messages. However, they assumed the input to be flat and therefore
ignored the recognition of nested structure in the input. Tupni [16]
reversed the record sequences and types for file formats or proto-
cols, where a record was a contiguous sequence of fields. However,
it only concentrated on identifying individual records, disregarding
the combination and nesting of records that were prevalent in com-
plex real-world formats such as MP4. Another example is TIE [23],
which could reverse data type abstractions (for example, integer)
from binary programs. However, these data types were not suitable
for guiding fuzzing. For instance, a length field might correspond to
an int variable in the program, but the int type was of little effect
in guiding the seed mutation.

Different from existing works, NestFuzz learns the knowledge
about the inter-field dependencies and hierarchy dependencies
by modeling the input processing logic with taint analysis. Our
structural knowledge more accurately reflects the program’s code
implementation, thereby enhancing effective fuzzing.

8 CONCLUSION

In this paper, we propose a smart structure-aware fuzzing approach,
NestFuzz. By modeling the input processing logic, it can identify
the dependencies across fields and sub-structures, and utilizes a
dependency-aware mutation strategy to improve fuzzing efficiency.
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Our evaluation results show that NestFuzz substantially outper-
forms the existing approaches in terms of both code coverage and
vulnerability discovery. It discovers 46 zero-day vulnerabilities and
37 have been assigned with CVE-IDs. Our research proves that an
in-depth understanding of the input structure is critical for fuzzing
to generate high-quality test cases.
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