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A Geometrical Perspective on Image Style
Transfer with Adversarial Learning

Xudong Pan, Mi Zhang, Daizong Ding and Min Yang

Abstract—Recent years witness the booming trend of applying Generative Adversarial Nets (GAN) and its variants to image style
transfer. Although many reported results strongly demonstrate the power of GAN on this task, there is still little known about neither the
interpretations of several fundamental phenomenons of image style transfer by generative adversarial learning, nor its underlying
mechanism. To bridge this gap, this paper presents a general framework for analyzing style transfer with adversarial learning through
the lens of differential geometry. To demonstrate the utility of our proposed framework, we provide an in-depth analysis of Isola et al.’s
pioneering style transfer model pix2pix [1] and reach a comprehensive interpretation on their major experimental phenomena.
Furthermore, we extend the notion of generalization to conditional GAN and derive a condition to control the generalization capability of
the pix2pix model. From a higher viewpoint, we further prove a learning-free condition to guarantee the existence of infinitely many
perfect style transfer mappings. Besides, we also provide a number of practical suggestions on model design and dataset construction
based on these derived theoretical results to facilitate further researches.

Index Terms—Generative Adversarial Learning, Unsupervised Learning Theory, Generalization Theory, Machine Learning
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1 INTRODUCTION

G ENERATIVE Adversarial Nets (GAN), from its first pro-
posal by Goodfellow et al. [2], remain one of the most

popular paradigms in generative modeling of unknown
distributions, fostering a wide range of applications in im-
age generation [3], text generation [4], speech synthesis [5]
and numerously more [6], [7], [8]. Roughly speaking, the
general idea behind GAN and its variants is intuitive: It
aims at learning a mapping from a source distribution, e.g., a
Gaussian distribution in the vanilla GAN [2] or an unknown
distribution of labels in its conditional variant [9], to a target
data distribution (e.g., a collection of facial images). By
solving the min-max game [10] between a generator (i.e., a
learning model which maps data from the source domain to
the target one) and a discriminator (i.e., a learning model
which distinguishes a generated sample from the target
distribution), the adversarial learning process finally learns
a realistic distribution for downstream generative tasks [11].

As a major use case of GAN and its variants, image style
transfer has been intensively studied in the recent few years
under the adversarial learning paradigm [1], [12], [13], [14],
[15]. Image style transfer, as a generic name for various spe-
cific tasks in image processing, includes tasks such as facial
expression transfer (e.g., poker face → smiley face), artistic
style transfer (e.g., realism → impressionism) and many
more. In general, image style transfer aims at processing an
image from a source collection to make it indistinguishable
among a target collection of images. Although a number of
models and methods exist in previous literature of image
processing [16], [17], [18], [19], the first successful attempt to
leverage the power of GAN on image style transfer, ought
to be attributed to the pioneering work of Isola et al. [1]
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(aka. pix2pix), which aroused a surge of research interests
on this topic (e.g., [12], [13]). Formally, most of the existing
adversarial learning based methods solve the optimization
problem below

style transfer with adversarial learning︷ ︸︸ ︷
min
G
Ladv(G)︸ ︷︷ ︸

adversarial loss

+λ Lid(G)︸ ︷︷ ︸
identity loss

(1)

Here, the former term Ladv(G) is called the adversarial loss,
which follows the general idea of conditional GAN [9] and
is usually implemented with the Wasserstein variant in
practice [20] to alleviate the instability of the vanilla GAN
loss [21]. Formally, the term displays as

Ladv(G) = max
‖D‖L≤1

Eq∼pr [D(q)]− Ep∼pg [D(G(p))] (2)

where pr, pg denote respectively the distribution of images
over the source and the target collections, G is the generator,
and the scalar-valued mapping D (i.e., the discriminator) is
required to satisfy Lipschitz continuity with constant 1.

The latter term Lid(G) is called the identity loss, an
original creation in the pix2pix model for utilizing the
available paired images as additional supervision for the
adversarial learning process. Formally, the identity loss was
implemented as `1-loss in [1] between the transferred image
and the ground-truth

Lid(G) = Ex,y∼pr(x,y)[‖y −G(x)‖1] (3)

where pr(x, y) denotes the distribution of paired images
(e.g., in facial expression transfer, one’s poker face and
the ground-truth smiley face). Noticeably, several alterna-
tive implementations were also proposed in the following
works, such as the cycle consistency loss [12].

Despite the empirical success of the above adversarial
learning paradigm for image style transfer, the following
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two experimental phenomena of pix2pix model, which
we suggest to be highly connected with the foundations
of GAN and adversarial learning, are still far from well-
studied and fully-interpreted in the existing literature.

Fig. 1. An illustration of two noteworthy yet theoretically unclear phe-
nomena first reported in the original work of pix2pix.

• Case A: Blurry versus Sharp. Omitting the adversarial
loss, i.e., solving Lid(G) alone, will lead to reasonable but
blurry results. In this case, although the learned style trans-
fer mapping G generates relevant target images, most
details are hard to be recognized. As illustrated in the
upper part of Fig. 1, the generated night-time counterpart
seems correct in correspondence to the source image but
is overly blurry.

• Case B: Source of Artifacts. Omitting the identity loss
by setting the regularization factor λ to 0 would produce
much sharper results yet cause some artifacts. As illustrated in
the lower part of Fig. 1, in this case, although the learned
style transfer mapping G generates realistic images with
recognizable details, the content of the generated image
however is kind of irrelevant with the given source image.

Although there do exist theoretical studies on analyzing
and improving the training dynamics and generalization
capability of GAN [11], [21], [22], [23], there is rarely applica-
ble theoretical results for analyzing conditional GAN, thus
for pix2pix and its empirical results. The inappropriateness
mainly comes from Eq. (2), where the model generates fake
images directly from a given image of intensively high di-
mension [24], instead of a low-dimensional Gaussian noise
in GAN. In fact, the simple violation of the low-dimensional
assumption would immediately invalidate most of the pre-
viously obtained theoretical results for GAN. Considering
the worthiness of obtaining reasonable theoretical interpre-
tations as guidance for further researches, we formulate this
non-standard model from a geometrical perspective, pro-
pose an extended definition of generalization for conditional
GAN and eventually reach a number of inspiring theoretical
results.

In this paper, to better understand the adversarial learn-
ing paradigm on style transfer, we first present a general
framework for analyzing style transfer with adversarial
learning with the aid of differential geometry [25]. Basically,
we propose to equip the source and the target collections of
images with Riemannian manifold structures and extend the
notion of the discriminator and the generator to this setting.

From this geometric perspective, the adversarial learning
approach to style transfer can be viewed as learning an
optimal transform from the source manifold to the target
manifold with oracles on distributional and point-wise cor-
respondence, respectively provided by the adversarial loss
and the identity loss. To demonstrate the effectiveness of our
proposed theoretical framework, we successfully a) attain a
full picture on fundamental yet unclear experimental phe-
nomena reported in [1], b) derive a quantitative condition on
the generalization capacity of pix2pix model and c) prove a
model-free condition to guarantee the existence of infinitely
many perfect generators at large. Here, by perfect, we mean
the generator G has its range covering the whole target
domain, which therefore eliminates the potential mode col-
lapse [26].

Noticeably, this work makes substantial extensions over
our earlier work [27] in the following aspects.
• Our theoretical results presented in Section 6 are unpub-

lished and, to the best of our knowledge, novel in the
sense that it observes for the first time that, the C∞-
diffeomorphism between the source and the target image
manifolds as a necessary and sufficient condition to guar-
antee the existence of infinitely many perfect generators.

• Additional discussions with well-presented illustrations
are added in the first two parts for better readability.

• Previously omitted technical details are clarified to further
strengthen the rigorousness of the statements.

In summary, we mainly make the following contribu-
tions.
• We present a geometric formulation of the standard

paradigm for image style transfer with adversarial learn-
ing in the language of differential geometry (§2).

• We derive the equivalence between the adversarial loss
part in the pix2pix model with a set of independent
learning tasks between paired charts of the source and the
target image manifolds (Thm. 3.1) and therefore provide
full interpretations on several unclear empirical phenom-
ena reported in previous works (§3.3 & §5.1)

• We extend the notion of generalization to conditional
GAN (Def. 4.2) and derive a quantitative condition on the
generalization of the pix2pix model (Thm. 5.1).

• As a substantial improvement over our earlier work [27],
we establish the C∞-diffeomorphism of the source and
target image manifolds as a sufficient and necessary con-
dition to the existence of infinitely many perfect genera-
tors for style transfer (Thm. 6.1 & 6.3).

2 PRELIMINARIES

2.1 Image Spaces as Smooth Manifolds
In this paper, we mainly study the WGAN adversarial
loss in its primal form [28] other than the Kantorovich-
Rubinstein dual form in Eq. (2), which writes

Ladv(G) = inf
γ∈Π(pr,pg)

E(x,y)∼γ [‖G(x)− y‖] (4)

where Π(pr, pg) is the set of joint distributions for pairs of
images (x, y) such that the marginal distributions are equal
to pr, pg . Intuitively, the explicit term of discriminator in its
dual form (Eq. (2)) can be considered to be replaced by the
inner optimal transport task [28] implicitly in Eq. (4).
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Fig. 2. Proposed geometric viewpoint on image style transfer with ad-
versarial learning.

Without loss of generality, we focus on the image style
transfer task from a source set of images IS to a target set
IT , with images of the same resolution w × h. As is well-
known, images can always be viewed as elements in certain
ambient Euclidean space (e.g., for images encoded in the
RGB scheme, it is R3×w×h). In fact, there also exists an
intrinsic structure over the image set alongside the ambient
space, as is validated by various empirical works previously
[24], [29]. Such an intrinsic structure is usually formulated
as a smooth manifold [21], [30]. For the basics of differential
geometry, we recommend the readers to refer to standard
texts (e.g., [31]).

In this work, we make a similar assumption as follows.

Assumption 2.1. There exist d-dimensional regular 1 Rieman-
nian manifolds M, N embedded in Rw×h, with the constructed
atlas as {(Ui, ϕi)}Ki=1, {(Vj , ψj)}Kj=1, respecting the pairwise
disjointness property, i.e., ∀i, j ∈ [K], Ui∩Uj = ∅, Vi∩Vj = ∅
if i 6= j, such that IS ⊂ M, IT ⊂ N . ([K] denotes the set
{1, 2, . . . ,K} and K a natural number)

Intuitively, if we take the example of facial expression
transfer (e.g., smiley face → poker face), each chart Ui(Vi)
of the underlying image manifold M(N ) can be viewed
intuitively as a set of images belonging to the same per-
son. In this scenario, the pairwise disjointness condition
can be naturally valid. Moreover, the assumption of equal
dimensions contained above is only for the convenience of
notation simplification. Results presented in the remainder
of this paper can be directly extended to the situation
when source and target image manifolds are of different
dimensions.

2.2 Induced Probability Measures on Image Manifolds
With Assumption 2.1, we partition the image sets IS ⊂ M,
IT ⊂ N into finer subsets, which formally writes IS =
∪Kk=1IkS , IT = ∪Kk=1IkT , where ∀k ∈ [K], IkS

.
= {sik}

mk
i=1 ⊂

Uk and IkT
.
= {tik}

nk
i=1 ⊂ Vk.

In order to describe the relatedness of images from the
same chart, the following assumption is imposed.

1. Throughout this paper, the following regularity conditions on
Riemannian manifolds are required, (1) compactness (2) finiteness in
sectional curvature. Note those assumptions are common in many
Riemannian geometry texts (e.g. [32]) and realistic in practice.

Assumption 2.2. For each k ∈ [K], there exist absolutely con-
tinuous probability measures µk, νk : B(Rd)→ [0, 1], supported
on ϕk(Uk) and ψk(Vk) respectively, such that {ϕk(sik)}mki=1

i.i.d.∼
µk, {ψk(tik)}nki=1

i.i.d.∼ νk, where B(Rd) denotes the Borel set over
Rd.

Noteworthily, the probabilistic structure introduced in
Assumption 2.2 also enhances the flexibility of Assumption
2.1. When the original images are not obviously divided
to different objects as in the facial expression transfer case,
one can indeed construct their own different atlas structures
under the restriction of the pairwise disjointness, by, e.g.,
clustering similar images into one chart. In this case, it only
requires us to redefine the imposed probabilistic measure µi
to correspondingly adapt to the new atlas structure.

With probability measures defined on each chart 2, we
utilize the following proposition to “glue” them together to
induce a unified probability measure globally respectively
over the underlying manifold structuresM,N , denoted as
µ, ν.

Proposition 2.1. Given a smooth manifoldM = {(Ui, ϕi)}Ki=1

with pairwise disjointness and {µi}Ki=1 as the probability mea-
sures supported on {ϕi(Ui)}Ki=1 correspondingly, a function
µ : B(M)→ [0, 1] is defined by

dµ(s) =
1

K

K∑
i=1

1s∈Uidϕi#µi(s) (5)

Then µ is a probability measure defined on M. Here, ϕi#µi :=
µi ◦ ϕi denotes the pull-back of the probability measure µi onto
the manifold M, which is a common notion used in measure
theory [33].

Proof. Please see Appendix A.1.

As a remark, although Eq. (5) contains a slight abuse of
notations (consider if s /∈ Ui, ϕi(s) is not defined), it can
be naturally resolved according to the pairwise disjointness
in Assumption 2.1, that is, all except one 1{s ∈ Ui} is non-
vanishing for any s ∈M.

2.3 A Geometrical Formulation of Style Transfer with
Adversarial Learning
As long as additional geometrical structure are imposed on
image sets, the definition of generator and discriminator
in the adversarial learning paradigm ought to vary corre-
spondingly.
Generator. In our context, the generator should be rede-
fined as a mapping between manifolds instead of between
flat Euclidean spaces. Formally, we require the generator
G ∈ C∞(M;Rw×h), the set of smooth open mappings
from Riemannian manifold M to Rw×h, which generally
includes common implementations of generators due to the
negligible measure of the set of discontinuity [34].
Discriminator. Within the manifold settings, the norm ‖ · ‖
ought to be imposed on the ambient Euclidean space. Specif-
ically, we equip the ambient space Rw×h of the target image
manifold N with a general metric d (e.g., the Euclidean
distance or general Lp metrics). Finally, we correspondingly

2. More precisely, probability measures are defined on its homeomor-
phism as Rd.
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reformulate the adversarial loss and the corresponding iden-
tity loss (cf. Eq. (4) & (3)), which serve as a departure for the
subsequent analysis in the rest of this paper.

Ladv(G) = inf
γ∈Π(µ,ν)

E(s,t)∼γd(G(s), t) (6)

Lid(G) = Es,t∼pr(s,t)d(G(s), t) (7)

where ∀γ ∈ Π(µ, ν), the following constraints are required,∫
M
γ(s, ·)dµ = ν,

∫
N
γ(·, t)dν = µ (8)

For compatibility with inner-relatedness in Assumption
2.2, we further assume ∀i 6= j ∈ [K], ∀x, y ∈ Vi, z ∈ Vj ,
d(x, y) ≤ d(x, z). Intuitively, it requires images in one chart
are more similar to each other than to outsiders, which
was recently validated in [7]. Fig. 2 illustrates our proposed
geometric viewpoint above.

2.4 Diffeomorphism of Riemannian Manifolds
Illustratively, C∞-diffeomorphism condition is described as
source image manifoldM can be smoothly shaped into the
target image manifold N . Formally, we provide its rigorous
definition as follows.

Definition 2.1 (C∞-Diffeomorphism [35]). Let M and N
be Riemannian manifolds. A map f : M → N is a homeo-
morphism if it is continuous and has an inverse f−1 : N →
M which is also continuous. Furthermore, we call f a C∞-
diffeomorphism between M and N if f, f−1 are smooth w.r.t.
M,N respectively.

Exchangeably, we call a Riemannian manifoldM is C∞-
diffeomorphic with N if there exists a C∞-diffeomorphism
betweenM and N , denoted asM≡ N .

In the proof of our main results, the following theorem
from Riemannian geometry is indispensable.

Theorem 2.1 (Gromov’s Convergence Theorem [32]). If
{Mi}∞i=1, N are d-dimensional Riemannian manifolds s.t.
limi→∞ dH(Mi,N ) = 0, then for a sufficiently large i,Mi ≡
N . Here, dH is called Hausdorff distance between Riemannian
manifolds, defined as

dH(M,N ) = max{ sup
p∈M

inf
q∈N

d(p, q), sup
q∈N

inf
p∈M

d(p, q)} (9)

where d is an arbitrary metric function defined on the ambient
space Rn.

Intuitively, Gromov’s theorem states, if a sequence of
Riemannian manifolds converges in the sense of Hausdorff
distance, then they are indeed C∞-diffeomorphic to the
limit manifold asymptotically.

3 ANALYSIS AND INTERPRETATIONS OF PIX2PIX

A widely recognized difficulty on analyzing adversarial
learning process lies in the bilevel optimization problem [2]
(here, specifically minG infγ∈Π(µ,ν)). To resolve this obstacle,
we prove in this section that, in our proposed framework
above, the infimum term in Eq. (6) can be solved in a
closed form, when non-trivial constraints are posed on the
candidate set of generator G (Thm. 3.1). Furthermore, we
observe that the derived closed-form solution decomposes

the original learning task as a set of independent learning
tasks on paired charts (i.e., a tuple of charts respectively
of M,N , such as (Ui, Vj)) and the pairing relations are
uniquely determined by the candidate sets. Based on this
result, we provide comprehensive interpretations fully for
Source of Artifacts and partially for Blurry versus Sharp
(§3.3).

3.1 An Equivalent Form of Ladv

As a preparation, we give the explicit form of the probability
measures µ, ν on manifolds as

dµ(s) =
1

K

K∑
i=1

1s∈Uidϕi#µi(s) (10)

dν(t) =
1

K

K∑
j=1

1t∈Vjdψj#νj(t) (11)

For simplicity, we write dµ̃i := dϕi#µi and dν̃i := dψi#νi,
∀i ∈ [K].

We then expand Ladv in Eq. (6) with the pairwise dis-
jointness property and obtain

inf
γ∈Π(µ,ν)

E(s,t)∼γ

K∑
i=1

K∑
j=1

1s∈Ui1t∈Vjd(G(s), t) (12)

By exchanging the expectation operator with summations
according to Fubini’s theorem [36] and writing the expecta-
tion directly in the integral form, we have

inf
γ∈Π(µ,ν)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

d(G(s), t)dγ(s, t) (13)

With a similar technique adopted in Dai et al. [37], for
every γ ∈ Π(µ, ν), there exist a function ∆ : N × N →
R+ ∪ {0} and fγ :M→N , satisfying

dγ(s, t) = dγ(t|s)dµ(s) = ∆(fγ(s), t)dµ(s)dν(t) (14)

where ∆ has an intuitive interpretation as a metric of
dissimilarity between elements on the manifold N , which
is independent from the choice of path and compatible with
inner-relatedness. In fact, with the following observations,
we suggest it is proper to absorb the term ∆(fγ(s), t) into
d(G(s), t).

a) Equivalence of optimization problems (without boundary
condition) [38]
– minG minfγ ∆(fγ(s), t)d(G(s), t)
– minG ∆(G(s), t)d(G(s), t)

considering the relatively large learning capacity of G,
usually implemented as a neural network [39].

b) It is possible to reparametrize the target manifold N by
altering the choice of its Riemannian metric τ so that the
preset metric function d is invariant, which is asserted by
the following proposition.
Proposition 3.1. Consider a regular Riemannian manifold N
with its metric τ ∈ C∞ and its induced distance function
dN , then for any path-independent function f : N × N →
R+ ∪ {0}, there exists a Riemannian metric τ

′
on N , induced

by the distance function

d
′

N (x, y) = f(x, y)dN (x, y) ∀x, y ∈ N (15)
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Proof. Please see Appendix A.2.
It is worth to notice, reparametrization of an image mani-
fold in practice can be done with different configurations
on the standard manifold learning algorithms [40], [41],
[42].

After we replace the original Riemannian metric, the
boundary condition

∫
M

∫
N dγ = 1 requires renormaliza-

tion. By introducing an additional matrix A ∈ H(K) s.t.
H(K)

.
= {A ∈ RK×K |∀j ∈ K,

∑
iAij = K; ∀i, j ∈

[K], Aij ≥ 0}, the adversarial loss minG Ladv(G) can be
reformulated as

min
G

min
A∈H(K)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

AijdN (G(s), t)dµ̃i(s)dν̃j(t)

(16)

Specifically, we start from the following form

min
G

inf
γ∈Π(µ,ν)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

d(G(s), t)dγ(s, t) (17)

By expanding the form with

dγ(s, t) = dγ(t|s)dµ(s) = ∆(fγ(s), t)dµ(s)dν(t)

we obtain

min
G

min
fγ

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

∆(fγ(s), t)d(G(s), t)dµ(s)dν(t)

(18)

By utilizing the observed equivalence between
minG minfγ and minG, we notice the boundary condition∫
M

∫
N dγ = 1 may be broken. Thus we introduce additional

variable A ∈ H(K) to maintain the normalization
condition, which can be checked by

∫
M
dγ =

1

K2

K∑
j=1

∫
Ui

(

∫
Vj

K∑
i=1

Aijdνj)dµi = 1 (19)

Finally, by inserting the Aij term into the original op-
timization problem above, we obtain the final form in Eq.
(16).

3.2 A Closed-Form Solution as Learning Tasks on
Paired Charts
The form of Eq. (16) basically comes from a re-choice of Rie-
mannian metric on N and a reparametrization of dγ(s, t) as∑K
i=1

∑K
j=1Aijdµ̃i(s)dν̃j(t), s.t. A ∈ H(K). Illustratively,

the adversarial learning problem is depicted in the upper
part of Fig. 3. Although it is almost infeasible to obtain a
closed-form solution for arbitrary mapping G, we find it
is indeed possible after imposing non-trivial constraints on
the candidate set of G, namely by restricting G into one PTI-
family, with its definition below.

Definition 3.1 (Pairwise Topological Immersion family
(PTI-family)). Given manifoldsM = {(Ui, ϕi)}Ki=1 and N =
{(Vj , ψj)}Kj=1, the set of mappings Fp = {G : M →
N|G(Ui) ⊂ Vp(i),∀i ∈ [K]}, where p ∈ Sym(K) the sym-
metric group of [K] [43], is called pairwise topological immersion
mappings indexed by p, w.r.t.M, N .

Fig. 3. An illustration of Theorem 3.1. By restricting the generator to
certain PTI-family Fp, we prove the original adversarial loss is naturally
decomposed as independent style transfer tasks between paired charts.

Preferring to delay intuitive remarks on this definition
to Section 3.3.1, we present one of our main results below,
which shows that, we can indeed obtain a meaningful
closed-form solution for the inner minimization problem,
by constraining the candidate set of G as any PTI-family
(Def. 3.1).

Theorem 3.1. [Natural Localization of Adversarial Loss] For any
p ∈ Sym(K), the optimization problem below

min
G∈Fp

min
A∈H(K)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

Aijd(G(s), t)dµ̃i(s)dν̃j(t)

(20)

is equivalent to

min
G∈Fp

K∑
i=1

∫
Ui

∫
Vp(i)

d(G(s), t)dµ̃i(s)dν̃p(i)(t) (21)

In other words, the optimal A∗ ∈ H(K) has the closed form as
(A∗)ij = Kδ

p(i)
j , where δp(i)j is the Kronecker delta function.

This result is also illustrated in Fig. 3.

Proof. Fix i, j ∈ [K], s.t. j 6= p(i) and arbitrary G ∈ Fp. We
first compare the following two terms

Tnon-paired =

∫
Ui

∫
Vj

d(G(s), t)dµ̃i(s)dν̃j(t) (22)

and

Tpaired =

∫
Ui

∫
Vp(i)

d(G(s), t)dµ̃i(s)dν̃p(i)(t) (23)

Notice any s ∈ Ui, G(s) ∈ Vp(i) ∩ Vj = ∅, which comes
from the assumption that G ∈ Fp and j 6= p(i), we have
∀t ∈ Vp(i), t

′ ∈ Vj , d(G(s), t) ≤ d(G(s), t
′
), according to the

compatibility of distance function with inner-relatedness of
charts.

And thus Tnon-paired ≥ Tpaired. Then we relax the fixation
of j. It is easy to see,

K∑
j=1

Aij

∫
Ui

∫
Vj

d(G(s), t)dµ̃i(s)dν̃p(i)(t) ≥

K

∫
Ui

∫
Vp(i)

d(G(s), t)dµ̃i(s)dν̃p(i)(t) (24)
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which is equivalent to the statement that the optimal
(Aij)

∗ = Kδjp(i) for each j ∈ [K].
On the contrary direction, we have for each A ∈ H(K),

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

Aijd(G(s), t)dµ̃i(s)dν̃j(t) ≥

K∑
i=1

∫
Ui

∫
Vp(i)

d(G(s), t)dµ̃i(s)dν̃p(i)(t) (25)

which concludes the equivalence between optimization
problems above.

3.3 Remarks on Theoretical Results

3.3.1 Discussions with an Illustrative Example
Intuitively, we may consider each chart onM,N as a cluster
of images, which has inner-relatedness imposed by {µi}Ki=1,
{νi}Ki=1. Take the example of facial expression transfer [13].
In Fig. 3, U2 is said to contain a set of Bob’s poker face,
while V1, V2 are respectively sets of Alice’s and Bob’s smiley
face. A PTI-family Fp exactly characterizes the generating
tendency of a given generator G. Let us come back to the
example. Assume p, q ∈ Sym(K) with p(2) = 1 while
q(2) = 2. Thus with the input as an image of Bob’s poker
face, generators from Fp tend to generate a sample of Alice’s
smiley face, while those from Fq prefer a sample of Bob’s
smiley face. Although it is clear to us the latter behavior
is expected, the adversarial learning model itself however
hardly has such a knowledge.

It comes to the significance of Thm. 3.1, which not only
gives a closed form for further analysis, but, more essen-
tially, also points out the role of {Fp}p∈Sym(K) as attractors
during optimization. As we can see, only if the optimizer
chooses some generator G ∈ Fp at some epoch, the original
optimization problem (Eq. (20)) will immediately degener-
ate to learning tasks on paired charts {(Ui, Vp(i))}Ki=1 (Eq.
(21)). The generator will thus be trapped in the subset Fp
until the end of the training. In our example, that is to
say, if the adversarial learning process accidentally lets the
generator fall into a wrong PTI family Fp (which generates
Alice’s faces with the input as Bob’s), the generator with
no external supervision will never attain the correct corre-
spondence no matter the duration of the training, according
to Thm. 3.1. This theorem can be considered as a support
to a recent result called imaginary adversary, which points
out that in the WGAN setting, the minimax game between
generator and discriminator can be resolved under some
technical conditions [30].

3.3.2 Interpretations of Empirical Phenomena
Interpret Source of Artifacts. Although it brings sharper
results with the adversarial loss alone, a non-negligible pro-
portion of artifacts is observed in experiments [1], [13]. As
a reasonable interpretation, we suggest it is tightly related
with what we have discussed above. Since the adversarial
learning model itself has no knowledge of the expected
pairing relation, or formally the ground-truth p ∈ Sym(K).
Although the choice of G (thus Fp) can be guided by
the empirical loss during the training phase, it still has a
large probability of mistaking the pairing relation, probably

due to, e.g., randomization in parameter initialization or
sampling. Especially when the optimal pairing it observes is
different from the expected one, a PTI-family as an attractor
will let the choice irrevocable. A compensative approach is by
imposing a pointwise correspondence oracle as a regulariza-
tion term, such as the `1-loss in [1] or the cycle consistency
loss in [12]. From our perspective, these oracles mainly play
the role as a rectifier for the choice of p.
Interpret Blurry versus Sharp. In previous empirical stud-
ies, after learning with identity loss (Eq. (7)) alone, the final
generator usually produces more blurry images compared
with the generator after learning with the adversarial loss
(Eq. (6)). When both of the losses are optimized w.r.t. the
same hypothesis space, the identity loss needs to learn a
global mapping G∗ : M → N , while, as a direct result
of Thm. 3.1, learning with the adversarial loss theoreti-
cally only requires learning the independent local mappings
{fi : Ui → Vp(i)}Ki=1 first and then gluing them into a global
mapping with a well-known theorem from general topol-
ogy called partition of unity [36]. Intuitively, learning local
mappings independently requires much smaller capacity of
G, compared with learning a globally compatible one (for a
theoretical justification, please see Proposition 5.1).

As a complement and a step further, we provide a formal
analysis on the benefit of localization in Section 5.1 to com-
plete our interpretations. Due to the indispensable notion of
generalization in analyzing model’s learning capability [44],
we first present an extended definition of generalization for
conditional GAN.

4 GENERALIZATION FOR CONDITIONAL GAN
4.1 Extension from Previous Definition
As generalization plays a central role in analyzing learning
models from a theoretical aspect, Arora et al. proposed the
following notion of generalization for GAN [11], by in-
corporating its difference from conventional discriminative
models [44]. Below, we introduce their definition with our
notations.

Definition 4.1 (Generalization w.r.t. Divergence [11]). A
divergence D(·, ·) is said to generalize with m training samples
and error ε if for the learned generative distribution νG (i.e., the
true distribution of the generated samples from the generator G),
the following inequality holds with a high probability,

|D(ν̂real, ν̂G)−D(νreal, νG)| < ε (26)

where ν̂real, ν̂G are respectively the empirical versions of the real
and the generative distributions, and νreal is the true distribution
of the real samples.

Although their work marks the first attempt to study
the generalization capability of GAN, such a definition
has several limitations: a) generalization is defined w.r.t a
specific divergence, instead of the generator itself. From
our perspective, we suggest it is still the generator that
holds the fundamental position in generative tasks. b) hard
for extension to conditional GAN, which however plays
an increasingly important role in empirical researches and
applications. Such a limitation directly makes it improper to
be applied to analyze the adversarial learning approach to
style transfer.
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As a complement to their notion of generalization, we
propose the following extension for both GAN and its
conditional variants, which characterizes the phenomenon
of generalization with respect to a learned generator G.

Definition 4.2 (Generalization w.r.t. Generator). Given a
divergence D(·, ·) and a generator G : M → N , we call G
generalizes with (m,n) training samples respectively from the
source and the target distributions and error ε if the following
inequality holds with a high probability,

D(G(µ̂mM), νN )−D(ν̂nN , νN ) < ε (27)

where µ̂mM, ν̂
n
N are estimators of the source and target distri-

butions, with µM, νN the corresponding true distributions and
G(µ̂mM)

.
= µ̂mM ◦G−1 the induced distribution on N [33].

Compared with Def. 4.1, our extension explicitly con-
tains the generator as an essential factor for generalization.
Furthermore, instead of assuming the source distribution as
a priorly known Gaussian, we view it with an empirical
estimator from m observed samples. Notice our definition
is actually an extension of Def. 4.1, since, by limiting m to
infinity and assuming G of sufficient learning capability in
the classical sense, Inequality (27) will directly degenerate
to Inequality (26) in the previous definition.

4.2 Relations of Generalization in Different Senses
As an auxiliary theorem for further analysis in the next
section, we derive the relation of the classical generaliza-
tion bound and the generalization bound for adversarial
learning based on Def. 4.2. For the sake of concreteness, we
specify the divergence D(·, ·) in Def. 4.2 as the Lukaszyk-
Karmowski metric [45], due to its similarity to the form we
have derived in Eq. (21) (by taking d as ‖ · ‖, the Euclidean
distance on Rw×h),

DLK(ν, ν
′
) =

∫
Rw×h

∫
Rw×h

‖x− x
′
‖dν(x)dν

′
(x
′
) (28)

where ν, ν
′

are arbitrary probability measures with their
supports in Rw×h (cf. Eq. (21)).

Theorem 4.1. Consider a generator G : Rw×h → Rw×h
satisfying Lipschitz condition with constant MG and µX , νY are
probability measures on Rw×h respectively with {xi}nXi=1

i.i.d.∼ µX

and {yi}nYi=1
i.i.d.∼ νY .

Assume the classical generalization bound satisfies the follow-
ing inequality with a probability 1− δ

Ex∼µX ,y∼νY ‖G(x)− y‖ −
nX∑
i=1

nY∑
j=1

‖G(xi)− yj‖
nXnY

< εclassical

(29)

where εclassical
.
= ε(nX , nY , µX , νY , δ) is the upper bound and

the empirical risk minimization (ERM) principle [44] is satisfied
with η (i.e., 1

nXnY

∑nX
i=1

∑nY
j=1 ‖G(xi) − yj‖ < η), then G

generalizes with (nX , nY ) training samples and with an εadv
error, with a probability 1− δ, i.e.,

DLK(G(µ̂nXX ), νY )−DLK(ν̂nYY , νY ) < εadv (30)

if the following condition is satisfied

εclassical− εadv + η < DLK(νY , ν̂
nY
Y )−MGDLK(µX , µ̂

nX
X ) (31)

Proof. Please see Appendix A.3.

As Theorem 4.1 indicates, unlike the classical general-
ization bound (especially in the Vapnik-Chervonenkis (VC)
sense [44]), the generalization error in adversarial learning
is also related with the variation of the source and the target
distributions.

5 CONDITIONS OF GENERALIZATION FOR PIX2PIX

Based on our extended notion of generalization above, we
are now able to fulfill our interpretations for Blurry versus
Sharp (§5.1). As a step further, we also derive a quantitative
condition to control the generalization capability of the
pix2pix model (Thm. 5.1), which provides several practical
implications on model design and dataset construction for
practitioners.

For the sake of concreteness, we start by specifying
some additional statistical settings. Recall in Assumption
2.2, we have imposed abstract probability measures {µi}Ki=1,
{νi}Ki=1 on {ϕi(Ui)}Ki=1 and {ψi(Vi)}Ki=1 respectively. We
further specify such an assumption with local Gaussian set-
tings.

Assumption 5.1. There exist unknown mean vectors in Rd,
denoted as {xi}Ki=1, {yi}Ki=1, and known covariance matri-
ces ΣM,ΣN ∈ Rd×d, such that for each i ∈ [K], µi =
N (·;xi,ΣM), νi = N (·; yi,ΣN ), where N (·;x,Σ) denotes the
normal distribution parametrized by (x,Σ). Additionally, we set
the sample sizes on charts {Ui}Ki=1, {Vi}Ki=1 equally as m, n,
without loss of generality.

It ought to be noticed that our Gaussian assumption
above will not impose strong limitations on our following
discussions, mainly because the Gaussian assumption re-
mains local (cf. the vanilla GAN [2]) and the parameters of
each Gaussian is not required to be observed (cf. Def. 4.1).

5.1 Benefits of Localization

In our previous interpretation of Blurry versus Sharp (§3.3),
a claim remains unjustified that learning a set of local
mappings is much easier compared with learning a globally
compatible mapping. With the following observations: a)
Lipschitz condition can be always satisfied with techniques
(e.g., clipping [20] or gradient penalty [46]) during train-
ing phase. b) εclassical, η,MG remain constant for the same
hypothesis space. c) The target-related term DLK(ν, ν̂) is
identical in both the local and the global tasks when the
pairing relation is unobserved, we reformulate Inequality
(31) as

C +MGDLK(µ, µ̂) < εadv (32)

where C := εclassical + η − DLK(ν, ν̂) a constant and the
Lipschitz constant MG is always non-negative.

By denoting probability measures underlying the global
task as µX = 1

K

∑K
i=1 µi and νY = 1

K

∑K
i=1 νi in the

Euclidean sense, it is sufficient to compare the two terms
below to justify our previous claim.

εlocaladv =
1

K

K∑
i=1

DLK(µi, µ̂
m
i ) (33)
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εglobaladv = DLK(
1

K

K∑
i=1

µi, µ̂
Km
X ) (34)

Intuitively, the term εlocaladv represents the average generaliza-
tion errors for all the local tasks (i.e., µi → νi, ∀i ∈ [K]),
while εglobaladv can be interpreted as the generalization er-
ror when the learning process is carried out globally (i.e.,
µX → νY ). For convenience, we set the pairing relation
e ∈ Sym(K) as e(i) = i,∀i ∈ [K] (the corresponding PTI-
family denoted as Fe). With the following proposition, we
eventually complete our unfinished interpretations for the
empirical results.

Proposition 5.1. In the settings above, we always have

εlocaladv < εglobaladv

Proof. Please see Appendix A.4.

5.2 Conditions of Generalization
We are now able to instantiate the generic inequality on
generalization. It is worth to notice, in the next theorem,
we characterize the classical generalization error term in
the VC sense and study the condition for εadv = 0, which,
intuitively speaking, guarantees the generated distribution
is even better than an estimated target distribution from m
real samples.

Theorem 5.1. Under the assumptions above, consider a generator
G ∈ Fe and a hypothesis space H with its VC-dimension bound
by a constant Λ. Assume for each i ∈ [K], the restriction of G to
a pair of charts fi

.
= G↓(Ui,Vi) ∈ H with ψi ◦G ◦ ϕ−1

i satisfies
Lipschitz condition with a constant MG, then G generalizes
globally with (Kn,Km) samples only if the following inequality
is satisfied with a probability 1− C(ε,Λ)(nmε2)τ(Λ)e−nmαε

2

,

ε+
1

nm
max{

n∑
i=1

m∑
j=1

d(G(sik), tjk)}Kk=1 <

1√
m

√
tr(ΣN ) + 2tr(ΣN )−MG(

1√
n

√
tr(ΣM) + 2tr(ΣM))

(35)

where C(ε,Λ) and τ(Λ) are positive functions independent from
n,m and α ∈ [1, 2] an absolute constant.

Proof. In order to apply Thm. 4.1, we first introduce the
following lemma to show the equivalence between LK
metric (Eq. (28)) with the assumed probability measures
in Euclidean space and each local objective defined on the
manifolds, which can be easily proved with the standard
results on norm equivalence (e.g., [36]).

Lemma 5.1. ∀i ∈ [K], consider a measurable mapping f̃ : Ui →
Vi with f

.
= ψi ◦ f̃ ◦ ϕ−1

i satisfying the Lipschitz condition,
then

∫
Ui

∫
Vi
d(f̃(s), t)dµ̃i(s)dν̃i(t) ' DLK(f(µi), νi), i.e., there

exist constants 0 < Cl < Cu <∞ such that

Cl <

∫
Ui

∫
Vi
d(f̃(s), t)dµ̃i(s)dν̃i(t)

DLK(f(µi), νi)
< Cu (36)

Therefore, for K independent local tasks, the global
generalization condition in Thm. 4.1 can be written as

max{εiclassical − εiadv + ηi}Ki=1 < min{DLK(νi, ν̂
n
i )

−MGDLK(µi, µ̂
m
i )}Ki=1 (37)

which serves as a sufficient condition in the worst case.
We take the surrogate of the LHS by setting εiadv = 0,

which corresponds to the situation when the observed sam-
ples on each pair of charts are identical. Therefore, we can
reformulate the inequality as

εclassical + max{ηi}Ki=1 < min{DLK(νi, ν̂
n
i )

−MGDLK(µi, µ̂
m
i )}Ki=1 (38)

Applying the result from [47], we could bound the left
side by ε with a probability 1− C(ε,Λ)(nmε2)τ(Λ)e−nmαε

2

,
that is

εclassical + max{ηi}Ki=1 < ε+
1

nm
max{

n∑
i=1

m∑
j=1

d(G(sik), tjk)}Kk=1

(39)

The next step is to deal with the right side. With some
algebras, we could deduce

min{DLK(νi, ν̂
n
i )−MGDLK(µi, µ̂

m
i )}Ki=1

= min{E‖νi − νni ‖ −MGE‖µi − µni ‖}Ki=1

+2tr(ΣN )− 2tr(ΣM) (40)

In order to write the first minimization term in a closed
form, we use the following theorem in information geome-
try.

Theorem 5.2. [48, Theorem 4.4] The mean square error of a bias-
corrected first-order efficient estimator is given asymptotically by
the expansion (with N observed samples):

E[(ûa − ua)(ûb − ub)] =
1

N
gab +O(

1

N2
) (41)

where gab denotes the Fisher metric on the manifold constructed
from a parametrized family of probability.

We thus apply this estimation on E‖νi− νni ‖ and E‖µi−
µni ‖. As is well known, the matrix of the Fisher metric for a
Gaussian N (x,Σ) is directly Σ, the covariance matrix itself.

By observing E‖νi− ν̂ni ‖ =
√
tr(E[(νi − ν̂ni )(νi − ν̂ni )T ])

and E‖µi − µ̂mi ‖ =
√
tr(E[(µi − µ̂ni )(µi − µ̂ni )T ]), we have

min{DLK(νi, ν̂
n
i )−MGDLK(µi, µ̂

m
i )}Ki=1

=
1√
m

√
tr(ΣN ) + 2tr(ΣN )−MG(

1√
n

√
tr(ΣM) + 2tr(ΣM))

(42)

which thus gives the condition of generalization above (with
the O(N−2) term omitted).

Discussions & Guidance for Practitioners. A brief discus-
sion on Theorem 5.1 and its practical guidance will conclude
this section. As we can see, generalization happens with
a higher probability when the RHS of Inequality (35) gets
larger and the LHS gets smaller. On one hand, as the
RHS is negatively related with the variance of the source
distribution (as we can see from the terms −tr(ΣM) and
−
√

tr(ΣM) in RHS), a larger RHS term can be brought by a
smaller variance of each local source distribution, especially
considering the multiplier effect of the Lipschitz constant

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 06,2020 at 05:08:07 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3011143, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

MG on the tr(ΣM)-related terms. On the other hand, to en-
sure a lower LHS term requires a uniformly lower empirical
risk. As each local chart has an intuitive interpretation as a
set of related images, we make the following suggestions on
dataset construction and model design.
• As a smaller variance of each local source distribution

means better generalization, images in one local chart of
the source manifold should be as similar to each other
as possible. For example, n copies of the same Bob’s
photo in one local chart gives a smaller variance than n
different photos of Bob. When this local condition extends
to the full training data, we suggest that the source set
of images should better respect a mixture of single point
distributions by, e.g., containing a collection of photos of n
different persons, other than a collection of images where
each one of them has some relations with others. In one
word, the source set of images should better be of lower
inner-similarity.

• As better generalization requires the empirical risks on all
the tasks to be uniformly lower, a blind increase in the
total number of images will hardly help generalization.
It is the balance in the numbers of different objects that
actually matters (empirically proved by [13]).

• Classical generalization capacity [44] and smoothness of
learning model w.r.t. data manifolds [49] should be con-
sidered equivalently important in model design for such
tasks (empirically proved by [7], [50], [51]).

6 EXISTENCE AND ABUNDANCE OF PERFECT
GENERATORS FOR STYLE TRANSFER

To generalize our earlier results, we subsequently study the
adversarial learning approach to style transfer in general. As
a novel observation, we prove in this section the equivalence
of the C∞-diffeomorphism condition with the existence and
abundance of perfect generators for style transfer. Notice-
ably, this remarkable condition is model-free and imposes
no additional restrictions on corresponding distributions
only if they are absolutely continuous over the manifold
structure.

6.1 Existence of Global Optimum

Theorem 6.1 (Existence Theorem). There always exists a global
optimum (G∗, γ∗) for Objective (6) such that∫

M×N
d(G∗(p), q)dγ∗(p, q) = 0 (43)

if and only ifM≡ N .

Proof. (Necessity) As Objective (6) is minimized to 0 for
some (G∗, γ∗), it means that there exists a sequence of
Riemannian manifolds and couplings {(Nt, γt)}∞t=1, where
Nt := Gt(M), Gt ∈ C∞(M,Rn) and γt ∈ Π(µ, ν), such
that d(Gt(p), q) < εt a.e. γt, for negligible errors εt > 0,
limt→∞ εt = 0.

Lemma 6.1. Let Gt be a continuous mapping and
the marginal distribution of γt ∈ Π(µ, ν) such that
d(Gt(p), q) < εt a.e. γt, for negligible errors εt > 0,
limt→∞ εt = 0. We claim supq′∈Nt infq∈N d(q

′
, q) < O(εt)

and supq∈N infq′∈Nt d(q, q
′
) < O(εt). In other words,

dH(Gt(M),N ) ≤ O(εt).

Proof. First, we prove the absolute continuity of γt. Accord-
ing to Assumption 2.2, µ, ν are absolutely continuous w.r.t.
the respective volume form. Since γt is a coupling, which
satisfies

∫
M dγt(p, ·) = dν(·), it implies that dγt(p, ·) is

absolutely continuous w.r.t. ν (a.t. Radon-Nikodym Theo-
rem [36]). A similar proof goes with µ. Therefore, with the
transitivity of absolute continuity, we have γt is absolutely
continuous onM×N .

Next, fix an arbitrary p ∈ M and its small open neigh-
borhood Up. With the absolute continuity of a coupling γt,
there exist an open set Vp ⊂ N s.t.∫

Up×Vp
d(Gt(p

′
), q)dγt(p

′
, q) ≤ O(εt) (44)

Therefore, ∫
Nt

inf
q∈Vp

d(q
′
, q)dGt#µ(p

′
) ≤ O(εt) (45)

Since Gt#µ is absolutely continuous (due to the continuity
ofGt), so as the Euclidean metric d, the average boundO(εt)
becomes a worst-case bound. Thus, with a slight abuse of
notations, we have

sup
q′∈Nt

inf
q∈N

d(q
′
, q) < O(εt) (46)

Similarly, we can prove

sup
q∈N

inf
q′∈Nt

d(q, q
′
) < O(εt) (47)

which in turn, by definition of Hausdorff distance, means
dH(Gt(M),N ) ≤ O(εt).

By taking limit of t at both sides of dH(Gt(M),N ) ≤
O(εt), we have limt→∞ dH(Gt(M),N ) = 0. By applying
Gromov’s Theorem (Thm. 2.1), we therefore have for a
sufficiently large T , GT (M) ≡ N . Again, due to the conti-
nuity and openness of GT , GT (M) ≡ M and transitivity
of diffeomorphism, we finally reach the conclusion that
M≡ N .
(Sufficiency) By definition, the assumption M ≡ N can
be equivalently stated as, there exists a mapping G ∈
C∞(M;N ) such that G is a diffeomorphism between M
and N . Therefore, we forward the proof by explicitly
constructing a deterministic coupling between the pair of
distributions (G#µ, ν) on Riemannian manifold N . Here,
we use the standard notation G#µ to denote the induced
probability measure of µ by mapping G : M → Rn.
Formally, G#µ(·) := µ(G−1(·)).

In other words, we would like to prove the existence of
γ∗ ∈ Π(G#µ, ν) such that∫

N×N
d(q

′
, q)dγ∗(q

′
, q) = 0 (48)

Lemma 6.2. Due to the regularity conditions of N , there
exist constants Cl, Cu such that CldN (q

′
, q) ≤ d(q

′
, q) ≤

CudN (q
′
, q), where dN is the geodesic distance metric on N

[25].

Proof. As the regularity conditions suggest, N is compact.
Therefore, since N is of finite dimension, then with the
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Heine-Borel property [36], supq′ ,q dN (q
′
, q) < ∞, so as

d(q
′
, q). Furthermore, dN (q

′
, q) = 0 ⇐⇒ q

′
= q a.e.,

so as d(q
′
, q) = 0 ⇐⇒ q

′
= q a.e. Therefore, there

exist positive constants Cl, Cu s.t. CldN (q
′
, q) ≤ d(q

′
, q) ≤

CudN (q
′
, q).

Therefore, we would turn to consider the existence of
coupling γ∗ such that∫

N×N
dN (q

′
, q)dγ∗(q

′
, q) = 0 (49)

which requires the aid of Moser’s theorem from optimal
transport theory.

Theorem 6.2 (Moser’s Theorem [28]). Let N be a n-
dimensional Riemannian manifold, equipped with a normalized
measure m induced from its volume form. Let µ0 = ρ0m,
µ1 = ρ1m be two probability measures on N where ρ0, ρ1 are
bound below by a constant K > 0 and are locally Lipschitz. If the
equation

∆u = ρ0 − ρ1 (50)

has solution u ∈ C1,1
loc (N ) (i.e., ∇u is locally Lipschitz). Then

there exists a flow (Tt)0≤t≤1 s.t. µt = (Tt)#µ0.

In order to leverage Moser’s theorem, the following
lemmas need to be checked.

Lemma 6.3. Probabilistic measures f#µ and ν are abso-
lute continuous w.r.t. the normalized measure m(dp) =
volN (dp)/

∫
N volN (dp) on N . As a result, we could write

f#µ = ρ0m and ν = ρ1m, where ρ0, ρ1 are locally Lipschitz.

Proof. According to Assumption 2.2, the absolute conti-
nuity of ν is immediate. For G#µ, consider an arbitrary
dS ⊂ N s.t. volN (dS) = 0 then by definition, G#µ(dS) =
µ(G−1(dS)) = 0 where the last equality comes from the
continuity of f , which follows the fact that G is a diffeomor-
phism.

Next, we claim ρ0, ρ1 are locally Lipschitz. Take ν = ρ0m
as an example. First, the continuity of ρ0 is by definition.
Therefore, according to Miculescu et al. [52], there exists a
sequence of locally Lipschitz functions to approximate ρ0,
therefore we simply replace the original ρ0 with the limit
with an infiniesimal error.

Lemma 6.4. The differential equation ∆u = ρ0 − ρ1 has
solutions in C1,1

loc (N ).

Proof. Please see Appendix A.5.

With Lma. 6.3 & 6.4, Thm. 6.2 can be applied to
construct a flow {Tt}0≤t≤1 on N s.t. T0 = Id while
ν = T1#G#µ. (For definitions of flow, please see Def.
6.1.) Therefore, by constructing the coupling of µ, ν as
γ∗(p, q) = δ

T1(G(p))
q dµ(p)dν(q) and G∗ = G, we find

(G∗, γ∗) as a global optimum for Objective (6), such that∫
M×N d(G∗(p), q)dγ∗(p, q) = 0.

6.2 Abundance of Perfect Generators
From the statement and the proof of Thm. 6.1 above, we
have already established the existence of a global optimum
(G∗, γ∗) for arbitrary WGAN settings, if and only if M is
C∞-diffeomorphic to N . In this part, we observe we could
indeed construct infinitely many perfect generators from the
one we have found. For intuition, please see Fig. 4.

Fig. 4. An illustrative proof for Theorem 6.3 and part of Theorem 6.1.

In the last few lines of the proof of Thm. 6.1, we have
once constructed a flow {Tt}0≤t≤1 on N as by-products.
In case of readers’ unfamiliarity of the concept of flow, we
concisely provide its definition below.

Definition 6.1 (Flow on Riemannian manifold [25]). We call
{Tt}0≤t≤1 a flow on N if the following conditions are satisfied:

1) ∀t ∈ [0, 1], Tt : N → N is a continuous mapping from
Riemannian manifold N to itself.

2) T0 = Id, i.e., ∀q ∈ N , T0(q) = q.
3) ∀t, s, t+ s ∈ [0, 1], Ts ◦ Tt = Ts+t.

With an application of the properties of constructed
flows on N , we prove the following theorem, which, in-
tuitively speaking, ensures the abundance of global optima
for Objective (6).

Theorem 6.3 (Abundance Theorem). If M ≡ N , there
exists an infinite number of global optima {(G∗t , γ∗t )}0≤t≤1 for
Objective (6) such that∫

M×N
d(G∗t (p), q)dγ

∗
t (p, q) = 0 (51)

Proof. Recall in the sufficiency part of the proof for Thm. 6.1,
we have constructed a global optimum (G∗, γ∗) s.t.∫

M×N
d(G∗(p), q)dγ∗(p, q) = 0 (52)

and a flow {Tt}0≤t≤1 onN such that T0 = Id, T1#G#µ = ν
a.e.

Then we claim, for each 0 ≤ t ≤ 1, (G∗t , γ
∗
t ) is also

a global optimum of value 0, where G∗t
.
= Tt ◦ G∗ and

γ∗t
.
= δ

T1−tG
∗
t (p)

q dµ(p)dν(q). First of all, it is easy to check the
well-definedness that G∗t ∈ C∞(M;Rn) and γ∗t ∈ Π(µ, ν)
mainly due to the continuity of Tt.

By replacing (G∗, γ∗) on the left side of Eq. (52) with the
constructed (G∗t , γ

∗
t ) for a arbitrary t ∈ [0, 1], we have∫

M×N
d(G∗t (p), q)dγ

∗
t (p, q)

=

∫
N×N

d(q
′
, q)δq

′

q dT1−t#G
∗
t#µ(q

′
)dν(q)

= 0 (53)
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where the last line comes from the fact that Tt ◦ T1−t = T1

and T1#G#µ = ν a.e.

As a corollary, we show the implied mutual exclusivity
between global optimum and mode collapse as follows.

Corollary 6.1 (Resolved mode collapse by M ≡ N ). Any
generator Gt∗ constructed in Thm. 6.3 is perfect. In other words,
there will be no mode collapse for any one of them.

Proof. For a random variable p ∼ µ and an arbitrary
t ∈ [0, 1], we have T1−tGt(p) ∼ ν from the proof above.
Furthermore, as the diffeomorphism G is invertible (Def.
2.1), there always exists a dual flow {Rt}0≤t≤1 on M s.t.
T1−tG

∗
t (p) = G∗t (Rtp). Therefore, by reparametrizing the

source distribution µ as µ◦Rt, it is easy to seeG∗t is a perfect
generator, for which no mode collapse will occur.

Future Directions. With the proved abundance of per-
fect generators under the C∞-diffeomorphism between the
source and the target manifolds, it would be promising
for future works to apply this result to improve the image
generation with GANs. For example, as the GAN generation
process can be viewed as a special case of “style transfer”
from a noise distribution to a given image distribution,
the diffeomorphism between the noise manifold and the
real image manifold should also guarantee the existence of
infinitely many generators. It may mitigate mode collapse
to some degree and hence increase the quality of image
generation. In practice, to ensure the diffeomorphism with
tolerable errors, it would be an interesting direction for fu-
ture works to construct the noise distribution via sampling
noises from the persistent Cěch complex [53] of the real data
distribution [54].

7 CONCLUSIONS

From a novel geometric viewpoint, this paper presents the
first theoretical framework for understanding the empirical
phenomena and the underlying mechanism of image style
transfer with adversarial learning. By providing compre-
hensive interpretations on previously unclear experimental
results in style transfer, clarifying the generalization capac-
ity of the state-of-the-art pix2pix model and establishing
the equivalence between C∞-diffeomorphism and the ex-
istence of infinitely many perfect generators, we strongly
demonstrate the utility and fruitfulness of our framework
for analysis. For future directions, it will be interesting to
further leverage this geometric tool to study the implication
of diffeomorphism on the possible convergence to Nash
equilibrium between the generator and discriminator. In
practice, future works may explore better architectures for
generative learning under the guidance of our theory. As
our theoretical results can be easily decoupled with the im-
age settings, we also suggest to study the transfer problem
between a source manifold structure to a target one via
adversarial learning in other application domains.
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